HeteroBench: Multi-kernel Benchmarks
for Heterogeneous Systems

Hongzheng Tian
hongzhet@uci.edu
University of California, Irvine
Irvine, CA, USA
Hewlett Packard Enterprise
Milpitas, CA, USA

Rolando P. Hong Enriquez
rhong@hpe.com
Hewlett Packard Enterprise
Milpitas, CA, USA

Alok Mishra
alok.mishra@hpe.com
Hewlett Packard Enterprise
Milpitas, CA, USA

Dejan Milojicic
dejan.milojicic@hpe.com
Hewlett Packard Enterprise
Milpitas, CA, USA

Zhiheng Chen
zhihenc5@uci.edu
University of California, Irvine
Irvine, CA, USA

Eitan Frachtenberg
eitan.frachtenberg@hpe.com
Hewlett Packard Enterprise
Milpitas, CA, USA

Sitao Huang
sitach@uci.edu
University of California, Irvine
Irvine, CA, USA

Abstract

The end of Moore’s Law and Dennard scaling has driven the pro-
liferation of heterogeneous systems with accelerators, including
CPUs, GPUs, and FPGAs, each with distinct architectures, com-
pilers, and programming environments. GPUs excel at massively
parallel processing for tasks like deep learning training and graph-
ics rendering, while FPGAs offer hardware-level flexibility and
energy efficiency for low-latency, high-throughput applications.
In contrast, CPUs, while general-purpose, often fall short in high-
parallelism or power-constrained applications. This architectural
diversity makes it challenging to compare these accelerators effec-
tively, leading to uncertainty in selecting optimal hardware and
software tools for specific applications.

To address this challenge, we introduce HeteroBench, a versatile
benchmark suite for heterogeneous systems. HeteroBench allows
users to evaluate multi-compute kernel applications across various
accelerators, including CPUs, GPUs (from NVIDIA, AMD, Intel), and
FPGAs (AMD), supporting programming environments of Python,
Numba-accelerated Python, serial C++, OpenMP (both CPUs and
GPUs), OpenACC and CUDA for GPUs, and Vitis HLS for FPGAs.
This setup enables users to assign kernels to suitable hardware
platforms, ensuring comprehensive device comparisons.

What makes HeteroBench unique is its vendor-agnostic, cross-
platform approach, spanning diverse domains such as image pro-
cessing, machine learning, numerical computation, and physical
simulation, ensuring deeper insights for HPC optimization. Exten-
sive testing across multiple systems provides practical reference
points for HPC practitioners, simplifying hardware selection and

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPE °25, Toronto, ON, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1073-5/2025/05

https://doi.org/10.1145/3676151.3719366

performance tuning for both developers and end-users alike. This
suite may assist to make more informed decision on AI/ML deploy-
ment and HPC development, making it an invaluable resource for
advancing academic research and industrial applications.

Keywords

Benchmark suite, heterogeneous computing, Python, OpenMP,
CUDA, OpenACC, HLS, High Performance Computing, CPU, GPU,
FPGA

ACM Reference Format:

Hongzheng Tian, Alok Mishra, Zhiheng Chen, Rolando P. Hong Enriquez,
Dejan Milojicic, Eitan Frachtenberg, and Sitao Huang. 2025. HeteroBench:
Multi-kernel Benchmarks for Heterogeneous Systems. In Proceedings of
the 16th ACM/SPEC International Conference on Performance Engineering
(ICPE °25), May 5-9, 2025, Toronto, ON, Canada. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3676151.3719366

1 Introduction

With the increasing complexity of computational tasks in Artificial
Intelligence (AI), Machine Learning (ML) and High Performance
Computing (HPC), there is a growing need for scalable hetero-
geneous computing systems that can efficiently manage diverse
workloads. These systems typically comprise numerous computing
units, including high-performance multi-core processors (CPUs),
graphics processing units (GPUs), and reconfigurable hardware ac-
celerators like FPGAs. Compared to systems with a single resource,
heterogeneous systems offer several advantages, such as improved
computational and power efficiency, better resource utilization, and
enhanced flexibility in handling diverse workloads [29, 31]. One
significant advantage of heterogeneous systems is their ability to
optimize specific tasks by leveraging the strengths of different types
of accelerators. For instance, GPUs are highly efficient for parallel
processing tasks achieving 25X speedup over CPUs [26], while FP-
GAs offer customizable hardware that is particularly advantageous
for applications requiring real-time processing, such as financial

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676151.3719366
https://doi.org/10.1145/3676151.3719366

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

algorithms [17], network processing [13] and have better power
efficiency than GPUs [32]. Distributing workloads across different
types of accelerators balances performance, improves power ef-
ficiency, and supports diverse applications from ML to scientific
simulations, leading to more sustainable computing practices.

Given these benefits, heterogeneous computing systems are gain-
ing increasing attention from both academics and the HPC industry.
However, to fully utilize the potential of heterogeneous systems, it
is crucial to have a robust and comprehensive benchmark suite that
can evaluate their performance across various applications. Such
a suite should not only assess system performance but also aids
researchers design and optimize compilers and runtime systems
for heterogeneous platforms.

Despite the numerous benchmark suites designed for heteroge-
neous platforms, many have become outdated with the evolution
of computing systems. Most existing benchmark suites (discussed
in Section 2) lack sufficient heterogeneity in supported accelera-
tors and programming languages. Python, despite its popularity in
AI/ML, is often excluded from HPC benchmarks due to increased
performance overhead and less precise hardware control than com-
piled languages like C++. However, Python’s inclusion is critical
for AI/ML developers working on several platforms, where perfor-
mance evaluation and system optimization are critical. This lack
of support restricts developers’ ability to evaluate performance
accurately and optimize systems effectively.

Python is the preferred language for AI/ML development due to
its simplicity and robust ecosystem, with libraries like TensorFlow
and PyTorch. These libraries leverage C++ backends for compu-
tationally intensive tasks, allowing developers to write in Python
while taking advantage of C++’s performance. However, many
users — primarily data scientists and application researchers rather
than advanced computer engineers — often miss out on full per-
formance potential, as Python’s slower execution can become a
bottleneck. This slowdown is mainly due to Python’s interpreted
nature, which incurs significant execution overhead. Without the
support of third-party libraries implemented in lower-level lan-
guages, pure Python execution becomes much less efficient for
computationally intensive tasks.

A tool that translates performance-critical Python code to opti-
mized C++ could bridge the gap, allowing users to keep Python’s
simplicity of use while achieving C++-level speed. To support the
development of such a tool, a benchmark suite that analyzes Python
and C++ performance on heterogeneous platforms, such as CPUs,
GPUs, and FPGAs, is essential.

Hongzheng Tian et al.

To address this need, we present HeteroBench!, a versatile
benchmark suite designed for heterogeneous HPC systems, incor-
porating several multi-compute kernel benchmark applications,
in Python and C++ to execute across various hardware platforms
efficiently. HeteroBench contains the following features:

e Multi-language support to meet diverse developer needs. It fea-
tures several multi-kernel benchmark applications in various
versions: standard Python, Numba-accelerated Python, standard
serial C++, OpenMP-enhanced C++ for both CPUs and GPUs,
OpenACC-enhanced C++ for GPUs, CUDA for NVIDIA GPUs,
and Vitis HLS-enhanced C++ for FPGAs.

o Compatibility with a variety of accelerators for comprehensive
performance evaluations, including CPUs, GPUs (from NVIDIA,
AMD, and Intel), and FPGAs (from AMD Xilinx).

o User-friendly high-level parallel programming (Python, OpenMP,
OpenACC directive) for enhanced accessibility and adaptability.

e Multi-kernel design guides users to customize the placement
across different hardware platforms, facilitating performance
evaluation and optimization for heterogeneous systems.

o Extensive testing across various platforms validated the effective-
ness and versatility of HeteroBench, showcasing performance
characteristics of various hardware configurations for researchers
and practitioners in heterogeneous computing systems.

The rest of this paper is organized as follows. Section 2 reviews
existing benchmark suites for heterogeneous systems. Section 3
gives the overview concepts and the selection of each benchmark
application. We introduce HeteroBench implementation designs in
Section 4 and show evaluation results in Section 5. In Section 6 we
discuss our design choices and finally, we conclude in Section 7.

2 Related Work

As heterogeneous platforms have evolved, numerous benchmark
suites have emerged; however, many have become outdated or
unsuitable for today’s integrated CPU-GPU-FPGA systems. We
selected some representative benchmark suites and summarized
them in TABLE 1.

2.1 Heterogeneous Benchmark Suites with
Single-type Accelerators

One of the earliest and most referenced benchmark suites is UC

Berkeley’s 13 Dwarfs [4], introduced when GPU-based platforms

were still emerging. While it provided valuable insights into vari-

ous computational patterns, such as dense and sparse linear alge-

bra or spectral methods, it falls short of meeting the demands of

LGitHub: https:/github.com/HewlettPackard/HeteroBench/

Criteria 13 Dwarfs Polybench MachSuite Rosetta Chai Rodinia HosNa HeteroBench
Multi-kernel Applications X

CPU Implementation X

GPU Implementation X X

FPGA Implementation X X X

Python Implementation X X X X X X

Multiple-brand GPUs* X X X X X X X

*(NVIDIA, AMD, Intel)

Table 1: Comparison of Selected Different Benchmark Suites.

HeteroBench

modern HPC systems. Today’s workloads require more specialized
benchmarks that reflect the growing importance of AI/ML work-
loads, hybrid computing paradigms, and large-scale distributed
systems. Additionally, newer platforms introduce heterogeneous
architectures that include Al-focused GPUs and tightly integrated
FPGA solutions, which were not considered in the original design
of 13 Dwarfs. Consequently, this benchmark suite is insufficient
for evaluating the performance and scalability of contemporary
heterogeneous systems.

Most existing heterogeneous benchmark suites focus on systems
with single type of accelerators, such as GPUs or FPGAs. For
instance, benchmark suites like [11, 12, 18, 21, 28, 34] are designed
primarily for GPU-based heterogeneous systems, typically utilizing
CUDA or OpenCL, which require explicit memory allocation and
data management. This constraint limits users’ ability to customize
benchmarks and restricts hardware platform compatibility, partic-
ularly between NVIDIA, AMD, and Intel GPUs. However, using
standard C++ code with OpenMP [10]pragmas can enable parallel
acceleration on CPUs and GPUs (from NVIDIA, AMD, or Intel)
through NVIDIA CUDA [22], AMD ROCm [1] or Intel OneAPI [16]
runtimes.

Similarly, FPGA-focused benchmark suites such as MachSuite [25]
and Rosetta [39] primarily evaluate FPGA performance using high-
level synthesis (HLS) C/C++ implementations. MachSuite includes
19 applications targeting only FPGA platforms, while Rosetta pro-
vides software versions that can also run on CPUs. However, the
CPU version of Rosetta serve merely as references without any
performance optimization, limiting their utility for thorough per-
formance evaluation.

2.2 Heterogeneous Benchmark Suites with
Multi-type Accelerators

Some benchmark suites extend beyond a single accelerator type,
aiming to evaluate systems with multiple types of accelerators
(e.g., CPUs, GPUs, and FPGAs). Rodinia [7] and Chai [12] primarily
target CPU-GPU heterogeneous systems and have been adapted
for FPGAs [9, 14]. However, these adaptations frequently require
considerable code rewriting, making them challenging to replicate
in other benchmark suites.

Other benchmark suites, such as HosNa [5], explicitly support
CPUs, GPUs, and FPGAs but restrict hardware compatibility to
Intel-exclusive platforms. This limits their applicability to broader
heterogeneous computing research, which requires evaluating mul-
tiple hardware vendors.

A key limitation of many multi-accelerator benchmark suites
is the lack of flexibility in assigning compute kernels to differ-
ent hardware accelerators. Most frameworks assume that the
entire workload will be executed on a single accelerator rather than
allowing different kernels to be mapped to different accelerators.

2.3 Role of Python in Benchmark Development

Given Python’s growing popularity among AI/ML practitioners,
it is essential to include Python implementations in benchmark
suites. Python’s popularity has soared due to its ease of use and
extensive libraries, making it a go-to language for many AI/ML
applications, and as computational demands increase, there is a

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

growing need to deploy Python applications on HPC systems or any
other heterogeneous architecture. However, there is a significant
lack of comprehensive compilation workflows that support this
deployment, which hinders the effective utilization of Python in
these contexts.

Despite many proposed compilation workflows, as previously
mentioned, most are limited to targeting either GPUs [30] or FP-
GAs [8, 15, 38] individually. There is a critical need for a versatile
compilation process that can handle Python applications and de-
ploy them across a heterogeneous system that includes both GPUs
and FPGAs. Benchmark suites with Python implementations will
be crucial for compiler developers, providing necessary testing and
validation to ensure that Python applications can be effectively
compiled and optimized for execution on heterogeneous architec-
tures that integrate multiple types of accelerators, including both
GPUs and FPGAs.

Polybench [24] is another popular benchmark suite that has un-
dergone several adaptations for GPUs and FPGAs. However, when
considering deployment on heterogeneous systems that include
both GPUs and FPGAs, several challenges issues arise. Polybench
primarily consists of benchmarks with a single compute kernel,
posing challenges when deploying multiple computing platforms
for task-level parallelism or pipelining. It requires manual compute
kernel partitioning, which is a substantial workload. Therefore, an
ideal heterogeneous benchmark suite should encompass applica-
tions with multiple compute kernels, allowing for more efficient
deployment and optimization.

3 The HeteroBench Suite Description

As discussed in Section 2, conventional benchmark suites often
fail to address the intricate needs of heterogeneous HPC systems.
Therefore, we purposely designed HeteroBench with the following
key features:

o Versatile Compatibility with Minimal Configuration: Eas-
ily deployable on most systems, requiring minimal setup and
supporting a wide range of GPU brands.

o Flexible Accelerator Assignment: Provides seamless config-
uration options to leverage GPUs, FPGAs, or parallelized CPUs
for acceleration, adapting to available hardware resources.

o Kernel-level Customization: Each benchmark supports multi-
ple computational kernels, enabling users to select and optimize
kernels for various hardware backends based on their specific
performance needs.

o Standardized Kernel Algorithms for Fair Comparison: Main-
tains consistent computational algorithms across all versions,
ensuring fair, apples-to-apples comparisons and reliable perfor-
mance benchmarking across different platforms.

Overall, the HeteroBench suite is designed to address the lim-
itations of existing benchmarks by supporting diverse hardware
configurations and offering flexible customization. It aims to fa-
cilitate the development and optimization of heterogeneous HPC
systems, ensuring the efficient and unbiased evaluation of modern
workloads across various platforms.

HeteroBench currently includes eleven benchmarks across four
domains: image processing, artificial intelligence, numerical com-
putation, and physical simulation, designed to expand over time

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

of Compute

Benchmarks (abbreviation) Kernels

Application Domain

Canny Edge Detection (ced) 5
Sobel Filter (sbf)
Optical Flow (opf)

Image Processing

3
8
Convolutional neural Network (cnn) 5
Multi-layer Perceptron (mlp) 3 Artificial Intelligence
Digit Recognition (dgr) 2
One Head Attention (oha) 3
4
3
2
2

Spam Filter (spf)

3 Matrix Multiplications (3mm) Numerical Computing

Alternating Direction Implicit (adi)

Parallelize Particle (ppc) Physical Simulation

Table 2: The benchmarks included in the HeteroBench suite.
Abbreviations will be used in the rest of the paper. A brief
description of each benchmark is listed in Appendices A.

as new benchmarks are developed and incorporated into the suite.
The list of all benchmarks in the HeteroBench benchmark suite
is presented in TABLE 2. Each benchmark comes with a baseline
Python version. Additionally, a Python Numba [19] version is pro-
vided, that leverages just-in-time compilation (JIT) through Numba
for improved performance. We also provide a standard sequential
C++ version that complements the baseline Python code, as well as
accelerated C++ versions that utilize OpenMP and HLS to accelerate
computationally intensive parts (i.e., for loops) for execution on
CPUs, GPUs, or FPGAs.

Hongzheng Tian et al.

To showcase OpenMP performance on GPUs, we implemented
both CUDA and OpenACC code, highlighting the differences be-
tween these parallelization methods on the same hardware. For a
fair, apples-to-apples comparison, we took special care to ensure
that the computational kernel algorithms remain consistent across
all versions, minimizing major algorithmic differences regarding
application initialization, file I/O, array definition, initialization,
and similar aspects.

The HeteroBench architecture overview is presented in Figure 1.
A top-level Python script administers the benchmark suite, allowing
for smooth execution on a variety of computing platforms. Users
are only required to customize two json configuration files. The first
is an environment-related configuration file (env_config. json)
that contains settings for various hardware platforms, such as
the necessary compilers, compilation flags, and linked libraries.
Default settings are provided for ease of use. The second is a
benchmark-related configuration file (env_config. json) that spec-
ifies input/output data, tunable variables, and the target hardware
for each computational kernel. These files allow users to customize
execution without altering source code.

Benchmark execution is initiated via a command-line interface,
where users specify the benchmark name, desired operation, target
backend, and optional parameters. Figure 1 illustrates the execu-
tion flow using Canny edge detection as an example, deploying the
CUDA version onto an NVIDIA GPU. Upon receiving a user com-
mand, the management script sequentially selects the requested
benchmark, identifies the appropriate code version, compiles it
using the designated hardware environment, and executes it on the

Benchmark Suite Configurations

Benchmark Info

Benchmark Implementations

Benchmark Selection, e.g., Canny Edge Detection

Legend

Config control =]
Command contro| sy

Environment Info

= Compiler, Flag, and
Library info of different
platform environments

S o
nvipiA AMD

Backend Selection, e.g., GPU-CUD

v

© 2

OpenACC "‘J

= Name and abbreviation *
= Data and source files c — ; b HeteroBench flow >
o <
= Workload parameters i é [.. X Q@J Benchmark
. ‘i‘b enchmar|
= Hardware info — X
Canny Edge 3 Matrix Convolutional Parallel Profiling Results
> Detection Multiplication Neural Network Particles

= Total execution time
= Kernel execution time

If GPU profiler enabled

= Kernel SMs usage
= Kernel memory usage
= Power consumption

1d11os a3eue|A |9A9]-do] YouagoualsH

= python, cpu, gpu, etc.
= QOptions

= Serial/Parallel execution

= FPGA synthesis &

eg run

Python Numba serial C++ parallel C++ CUDA OpenACC HLS .
Command Inputs from Users Action Selection, e.g., build ¥
= Benchmark name/abbreviation ok 1
. ’ .
e e e, |2 :) Hardwares e (inteD
» Targeted backend ‘# Multl -core CPU AMD NVIDIA

M-’

implementation

Figure 1: The overview of HeteroBench suite architecture.

HeteroBench

target platform. Finally, the profiling results are collected and re-
turned to the user. This automated workflow enables a streamlined
benchmarking process with a single command.

4 Design and Implementation

Our benchmark suite distinguishes itself from most others by pro-
viding multiple versions of the same kernel in a multi-kernel ap-
plication in different programming languages to support heteroge-
neous architectures. For GPUs, we chose OpenMP and OpenACC
to ensure code consistency across code versions, enabling fair and
consistent comparisons. Unlike CUDA and OpenCL, which require
substantial code modifications to optimize for GPUs, both OpenMP
and OpenACC use compiler directives, resulting in simpler and
faster development, especially when working across multiple GPU
vendors. Their high-level abstractions can help handle GPU paral-
lelism without getting entangled in vendor-specific details, which
can be a considerable advantage in the heterogeneous computing
environment. They are best suited for scientific applications and
environments that require portability and ease of usage.

However, while OpenMP and OpenACC provide valuable ab-
stractions for GPU programming, they can restrict users’ access to
low-level optimizations, which may affect performance on some
GPU workloads. To provide a more comprehensive assessment, we
implemented CUDA versions of all benchmarks, serving as a critical
performance reference. This approach enables a direct comparison
of OpenMP with GPU-specific programming on identical hardware,
offering insights into the potential performance trade-offs, and help-
ing users make informed decisions about the best programming
approach for their needs.

In addition, by providing Python versions, we make our bench-
marks accessible to a broader audience, enabling AI/ML developers
to evaluate performance within a familiar environment. Addition-
ally, the Python versions serve as a baseline to highlight the perfor-
mance improvements achieved through various optimizations and
parallelization techniques. This also supports compiler designers in
developing and testing tools that target Python for heterogeneous
platforms, facilitating advancements in Python performance on
modern hardware.

4.1 Python and Serial C++ Code Design

The design of the baseline Python and standard serial C++ code
forms the foundation of HeteroBench, ensuring that each bench-
mark operates correctly before parallelization and hardware ac-
celeration are applied. For benchmarks without standard golden
results, we use output from the baseline Python or serial C++ code
as a reference.

While Python offers extensive computational libraries, we manu-
ally implemented key computations to maintain consistency across
Python and C++ versions. This approach ensures robustness, main-
tainability, and extensibility while enabling fair and reliable per-
formance comparisons across programming environments. These
Python applications serve as our baseline for all experiments.

The C++ implementation mirrors the structure and flow of the
Python code, maintaining consistency across versions. Our C++
design emphasizes modular, configurable components that allow

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

for easy integration and minimal modification across different hard-
ware backends. While some benchmarks are adapted from existing
works, as elaborated in Appendices A.3, A.6, A.8, and A.10, we
split kernels into individual files rather than combining them into
a single project file. This approach allows users to select and target
specific kernel implementations for heterogeneous execution with
ease.

4.2 Parallel C++ Code Design

The parallel C++ code design leverages multi-threading to enhance
the performance on CPU and GPU platforms. We begin by identify-
ing the computationally intensive sections of the serial C++ code,
focusing on loops and function calls that can benefit the most from
parallelization. Using OpenMP and OpenACC pragmas, we anno-
tate these sections to enable parallel execution. We choose OpenMP
and OpenACC for their simplicity and widespread support on dif-
ferent hardware, allowing us to achieve significant performance
gains with minimal code modifications.

To illustrate the modification from python implementation to a
serial C++ loop to a parallelized loop using OpenMP and OpenACC
pragmas, consider the examples shown in Table 3. Other codes (like
OpenMP target offloading, CUDA and HLS) are not represented
here to save space.

1 for i in range(N):
2 for j in range(M):
3 result[i][j] = process(datalil[j])

Listing 1: Python for loop

i < N; ++i) {
0; J < M; ++j) {
] = process(datalil[j]);

for (int j

for (int i = 0@
result[i][

3

N T

13

Listing 2: Serial C++ for loop

#pragma omp parallel for collapse(2)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
result[i][j] = process(datalill[j]1);
33

Listing 3: Parallel C++ for loop with OpenMP

TR W N R

#pragma acc data copyin(datal[@:NJ[@:M])

1

2 #pragma acc parallel loop collapse(2)

3 for (int i = @; i < N; ++i) {

1 for (int j = 0; j < M; ++j) {

5 result[i][j] = process(datalil[j1);
6 33

7 #pragma acc data copyout(result[@:NJ[0:M])

Listing 4: GPU offloading with OpenACC

Table 3: Comparison of Python, C++ Serial, OpenMP, and
OpenACC Implementations

In the serial implementation in Listings 1 and 2, the process
function processes each element of the data array sequentially. In
contrast, in the parallel version shown in Listing 3 and Listing 4, the

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

omp parallel for and acc parallel loop directives instruct
the OpenMP and OpenACC runtimes to parallelize the execution
of the nested loops. The collapse(2) clause merges the two loops
into a single iteration space, allowing both OpenMP and OpenACC
to distribute iterations across multiple threads more effectively.

For GPU code, we need to use the omp declare target or acc
routine directives in OpenMP and OpenACC, respectively, to indi-
cate that the process function should be compiled for execution on
the device. Data management directives are also needed to transfer
data between the host and the device, as shown in Listing 4.

However, achieving the ideal speedup depends on several factors,
especially in a more complex situation (detailed discussion and
analysis in Section 5), including:

o Thread Management Overhead: There is a cost associated
with creating and managing threads.

e Load Balancing: The workload must be evenly distributed among
all threads to prevent situations where some threads finish much
earlier than others.

e Memory Bandwidth: Multiple threads accessing memory simul-
taneously can lead to bandwidth saturation, limiting speedup.

e Cache Coherence and Contention: Threads might contend for
cache resources, leading to potential performance degradation.

o Synchronization Overhead: Any synchronization required be-
tween threads can introduce delays.

The parallel C++ code design aims to maximize computational
throughput, reduce execution time, and maintain the accuracy and
robustness of the benchmarks. While OpenMP and OpenACC are
used for parallelization across both CPU and GPU, users must have
the appropriate environments set up, such as NVIDIA’s CUDA [22],
AMD’s ROCm [1], or Intel’s oneAPI [16], depending on their spe-
cific hardware. This ensures that the benchmarks can fully leverage
the capabilities of the underlying hardware, ensuring optimal per-
formance. Without the correct environment, users may encounter
compatibility issues or fail to take advantage of the parallel pro-
cessing power available, resulting in failed or suboptimal execution
or less efficient benchmarking results.

4.3 CUDA Code Design

In contrast to the OpenMP/OpenACC implementation, the CUDA
code explicitly includes memory allocation and data transfer opera-
tions, which are necessary for moving data between the host (CPU)
and the device (GPU). These steps involve allocating device mem-
ory using cudaMalloc, transferring data with cudaMemcpy, and
ensuring proper synchronization before and after kernel execution.
CUDA codes are generally longer due to the added complexities of
detailed control over memory allocation, explicit data movements,
thread management, synchronization, and the explicit configura-
tion of threads and blocks.

Despite these additions, the computational kernels in the CUDA
implementation remain consistent with those in the OpenMP C++
code. We have carefully structured the CUDA kernels to match the
logic and flow of the OpenMP/OpenACC version, ensuring that the
computation remains identical. This approach maintains fairness in
the performance comparisons, as any observed differences in execu-
tion time can be attributed to the underlying parallelization model

Hongzheng Tian et al.

and hardware acceleration capabilities rather than code structure
or logic variations.

4.4 HLS C++ Code Design

As mentioned in the previous sections, our goal is to keep the
algorithm of C++ code consistent across CPUs, GPUs, and FPGAs
while making minimal code changes. However, the Vitis HLS [36]
implementation without specific adaption can be significantly slow
(see Section 5) due to the following reasons associated with the
direct directives insertion:

e Inefficient Memory Access: The HLS C++ framework treats
I/O pointer arguments as master Advanced eXtensible Interface
(AXI) [36] interfaces, which necessitates that every array access
goes off-chip to High Bandwidth Memory (HBM) [2], leading to
inefficient data transfer between kernels, compounded by the
interference of the Xilinx Runtime Library APIs [35] and under-
utilization of the on-chip Block Random Access Memory (BRAM).

o Lack of Task-Level Parallelism: Separate kernels do not lever-
age the FPGA’s advantage in task-level parallelism. This results
in a purely sequential execution of different kernels, for which
low clock frequency-driven FPGAs are not competent.

e Variable loop boundary: Suggested by the HLS user guide [3],
unlike the general C++ that takes loop boundaries as kernel
augment, variable loop boundaries for kernel reusing. This can
be solved by replacing it with static loop iterations.

The limitations above indicate an under-utilization of the FPGA’s
acceleration potential, which causes some benchmarks to not be
synthesizable or executed correctly on the FPGA board. Conse-
quently, we manually rewrote these benchmarks from different
computation patterns to make them work properly and optimize
their FPGA execution flow.

For example, the image processing benchmark opf produces and
consumes data in a strict sequential order. On-chip buffers and
FIFOs are necessary to achieve the sequential pattern. Thus, we
utilize efficient unified buffers for the kernels to access both row
and column elements sequentially.

The dgr benchmark was noted in previous research [39] for its
high compute-to-communication ratio. Each test instance requires
10 to 1000 cycles for calculating the Hamming distance and per-
forming KNN voting. Additionally, training samples and labels are
stored on-chip and reused for all test instances, establishing it as a
compute-bound application. Consequently, the HLS optimizations
applied to this benchmark include array partition, loop pipelining,
and unrolling.

For the time-consuming 3mm benchmark, we consider the pragma
dataflow, to run the code in task-level parallel of the first two
matrix multiplications. The inputs are bound into different ports
to enable the dataflow. Moreover, the variable loop boundaries in
matrix multiplication are converted into static iterations.

4.5 HeteroBench Top Design

The HeteroBench suite is managed by a top-level Python script that
automates benchmark compilation and execution. This script ab-
stracts the complexity of heterogeneous computing environments,
ensuring seamless integration across diverse hardware platforms.

HeteroBench

As mentioned in Section 3, the script loads the environment
and benchmark configuration files, which define hardware settings,
compiler options, and execution parameters. Based on these configu-
rations, it dynamically generates the necessary build and execution
commands.

In addition, to maintain portability and flexibility, the script
leverages the Jinja [23] template engine to dynamically generate
Makefiles based on the provided configuration parameters. Instead
of relying on static Makefiles for each benchmark, the template-
driven approach allows the system to customize compilation flags,
target architectures, and library dependencies at runtime. Users
who prefer manual compilation and execution can directly use the
generated Makefiles to build and run specific benchmarks, allowing
for greater customization.

During execution, the script generates a benchmark-specific
Makefile, injecting hardware-specific parameters. It then invokes
the appropriate make targets using Python’s subprocess module,
ensuring consistent compilation across different platforms.

This templated Makefile approach also simplifies adding new
benchmarks. Users only need to update the configuration file and
provide a Jinja-based Makefile template, eliminating extensive man-
ual setup and making the suite easier to extend.

5 Evaluation and Results

All environment variable settings are included in the environment-
configuration file, which can be passed to the top-level Python
script to generate the benchmark’s Makefiles. This file contains
essential environment variables, including various compiler infor-
mation (e.g., clang++, nvc++, icpx), C++ flags, OpenMP/OpenACC
libraries, AMD Xilinx toolkit-related paths, and other necessary
configurations. We have pre-configured all variables to minimize
the need for user modifications. This setup allows users to run the
benchmarks with minimal effort, leveraging the predefined settings
tailored for common environments. If a user’s actual environment
differs from our presets, only a small portion of the configuration
file needs to be adjusted, ensuring a convenient and straightforward
setup process.

For different types of GPUs, we assume that users have already
installed the corresponding toolkits, such as CUDA, ROCm, and
OneAPI. For FPGA, we assume that users have installed the AMD
Xilinx development tools and have access to the necessary develop-
ment boards.

We have conducted tests of our benchmark suite on a total of
four servers, each equipped with different CPUs and GPUs. To
ensure a fair comparison, we present the CPU benchmark results
only from the AMD EPYC 7713 64-Core Processor. This includes
results for Python, Python-Numba, serial C++, and parallel C++
enhanced by OpenMP. For GPUs, we tested on NVIDIA A100 80GB,
AMD MI210, and Intel Data Center GPU Max 1100. For FPGA, we
collected the data from AMD Xilinx U280.

By standardizing the environment setup and providing flexible
configuration options, we facilitate a consistent and reproducible
evaluation process for various hardware platforms. To account for
initialization overhead, we perform a warm-up iteration before
measuring execution time. Each benchmark is then executed 20
times, and the average runtime is reported. This approach helps

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

mitigate variability caused by transient system states. For a detailed
analysis of runtime fluctuations, refer to Section 5.3.

5.1 Lines of Code Comparison

The number of lines of code (LOC) in various programming lan-
guages often indicates their ease of use and the level of abstraction
available. Languages, like Python, that require fewer lines of code
to achieve the same functionality, typically provide higher-level
abstractions, built-in functions, and simpler syntax. This simpli-
fies the process of writing and maintaining code, making these
languages more accessible even to non-software engineers.

python numba serial c++ cpu_omp gpu omp gpu acc cuda hls c++
ced 233 239 351 356 382 381 534 704
opf 285 294 533 541 630 630 831 808
sbf 125 129 210 216 231 231 312 407
cnn 287 294 432 444 414 414 659 919
mlp 229 232 369 374 463 466 576 1077
oha 255 262 401 411 450 450 596 685
dgr 199 199 230 239 265 262 335 391
spf 230 235 391 394 414 414 497 680
3mm 119 123 297 298 309 309 374 439
adi 88 147 253 261 262 263 340 458
ppc 275 183 618 620 686 687 733 350

Table 4: Number of lines of code for all benchmarks.

TABLE 4 displays the total number of lines of code written for
each benchmark across all code versions. As mentioned before, to
ensure a fair comparison, we avoided using any existing computa-
tional libraries, such as NumPy, in the Python code’s computational
kernels. Despite this, the Python code still has significantly fewer
lines than the C++ code, while the FPGA code consistently requires
the most lines for the same algorithm due to its lower-level nature
and requirement for explicit hardware control.

5.2 Profiling Results

5.2.1 Compare Across Different Code Versions. In Figure. 2a, the
results show the overall runtime of a single iteration for each bench-
mark in different code versions. All the tests presented here are
homogeneous, meaning that all the kernels in a given benchmark
run on the same hardware. For instance, the bar labeled "NVIDIA
A100 OpenMP" in opf represents that all kernels in opf are accel-
erated by OpenMP and executed on the NVIDIA A100 GPU.

It is evident that, except for adi and ppc, the Python versions of
most benchmarks have the longest execution times. This outcome
is expected because, to ensure fair comparisons across different
compilation environments and hardware platforms, we maintained
consistency in the code and did not use any existing computational
libraries, such as NumPy, in the Python implementations. As a result,
the Python code takes significantly longer to execute, highlighting
the limitations of Python as an interpreter-based language. Without
optimizations provided by third-party libraries (often implemented
in lower-level languages like C/C++), Python’s performance lags
substantially behind.

Using Numba to accelerate the Python code brings substantial
improvements. Numba compiles Python code to machine code at
runtime, leveraging performance gains typically associated with

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

Hongzheng Tian et al.

Python Numba C++ Serial C++ OpenMP NVIDIA A100 OpenMP = NVIDIA A100 OpenACC NVIDIA A100 CUDA Xilinx U280 HLS
ms
1E+8
]
1.E+7 § 0
8 g
a]
g2 g
1E+6 S 3
& o0 - 3
~© =] 5
o o @ H ® m
5 g Mo a B n m
LE+S g | 83] 2 o B 3 o
o y = wn o] I ~ o
= o o in® s] m © i B ©
B s - 7] B | = a] "] -] =
n a8 o a o in = 0 = B =1
L4 R il 8 BR3 2] 2 S 2 fe~ 3 g i
| [| -] on
| Bzs s N 3 8 B ga e ° 8
2 - a Q5 in 5 88 &1 5]
o ~ 5 O oD H N A 0
1E43 L § ~ ESH | T - [| oS Sos mi Qg B9 B Q4 5%
] 20 [| S SNEE o8R8 8" EINEN- P -1 8" @ 88 ER3
3 2 Nged N QnE% = - oRE B8 SBbERs 18 BR §< CUE-ES
LE+2 B 8 ISR 1 ol = Nalem alm 5 & S g8 Rage = 88 SaES N3 &
& o = SOEe I a a8] 2 8 B8 N oR = ER oS8 M ng SES
Bogo SNg Y o oM | Sofis 39T 8] 1 Gofal bl] 1)
)= P SEa EnBngl Qe S 8 2NEE SRES BME
1.E+1 Q obEd N oMo N o =] aSs=
= GE2ER T || ERE |]] =
s s R0 o
SS88 2 HeEs 8 [| =
1.E+0
ced opf sbf cnn mlp oha dgr spf 3mm adi ppc

(a) Total execution time comparison across different languages for each benchmark. Data for Python, Numba, C++ serial, and C++ OpenMP

were collected on MD EPYC 7713 64-Core Processor.

C++ Serial C++ OpenMP NVIDIA A100 OpenMP

ms
1E+8 ¢

1.E+7
1.E+6

1.E+5

824256

1E+4

24495

1.E+3

2250.29
6700.72
7724.9

2398.77
569.537

1E+2

359.334
1809.96
1232.81
1211
423.599
799.2609

812336

92.11554

1E+1

162.471
173.191
3.240067
563.2448228

5.8235

9.646894
6.51436
53.3208

NS 6

opf sbf cnn mlp

10948.1

449.548

©
~
~
e
<
~

oha

AMD MI211 OpenMP

303.636

H Intel Max 1101 OpenMP Xilinx U280 HLS Heterogeneous
=
£
]
a
2
38
=
| =3
&
) o
2
N 2 2
° - | b=
o 0 | (<]
& a 8 &
8 & & 8
o a 2
] & o ©
n ems 38 5 R
o= = &
RS o x@s = Ba Iy @ <
N © o 088 = i & = e
S8 5 a®e “ N S =
- S S Jdg = S RoutB8 v § %
o - =~ o~ = o = ms S 0 < < o0
s ~ o~ o n] = oo ® 3 65 o S
= a g e o © < a3 = © g @
& k M ® ~ o 8= N a3 I
] = S 5 o *S 1
o 3 < < < o o
N bl ol = b= &
dgr spf 3mm adi ppc

(b) Total execution time comparison across different devices for each benchmark. Data for CPU serial and CPU OpenMP were collected on MD
EPYC 7713 64-Core Processor. The heterogeneous version was created after testing the homogeneous versions by selecting the fastest platform

for each kernel and combining them to form the final version.

Figure 2: The total execution time comparison in the Log10 scale for each benchmark in a single iteration. The fastest one is
highlighted in red. The non-solid bar in ppc is due to execution errors on AMD MI210. The bars with a solid border for Xilinx
U280 indicate they are adapted/optimized to ensure proper FPGA execution.

compiled languages. This optimization reduces execution times sig-
nificantly (e.g., in ced, sbf, and spf), making the Numba-accelerated
versions competitive with other implementations.

In both serial and parallel CPU implementations, performance
improves significantly across most benchmarks. The parallel CPU
version employs OpenMP directives to efficiently distribute work-
loads across multiple cores, minimizing bottlenecks and idle time.
Interestingly, in the ppc benchmark, the parallel CPU version out-
performs all GPU versions, due to the workload’s compatibility
with CPU architectures, where thread management overhead is
reduced, and memory access patterns are more efficiently handled.

However, using OpenMP does not always guarantee better per-
formance, as seen in spf in Figure. 2a. The sigmoid kernel in this
benchmark performs scalar operations and is not parallelized in
this comparison. When parallel optimizations are applied to the
CPU, we observe that performance can degrade compared to se-
rial execution. This is likely due to task granularity: the amount
of work done per iteration is too small, making the overhead of
parallelization more significant. Creating and managing threads for
each loop iteration adds overhead, and the lightweight operations
inside the loop do not compensate for this overhead.

Regarding GPU results, intuitively, CUDA versions should be
the fastest as they offer more low-level control, allowing finer-
grained GPU code optimizations. However, based on our results,
CUDA is not always the fastest. For instance, in mlp, the OpenMP
version is the fastest, while in dgr, it performs significantly slower
than the other two versions. In ced, OpenACC is the fastest, but it
lags behind the other versions in mlp. In 3mm, however, the CUDA
version vastly outperforms the other implementations. This may be
due to vendor-specific optimizations for OpenMP and OpenACC,
which vary across different hardware platforms.

GPUs are not always the best option for all benchmarks. Com-
pared to fully optimized FPGA code (e.g., opf and dgr), even the
NVIDIA A100 cannot achieve the same level of performance. For
other computationally intensive benchmarks, HLS implementations
typically show longer execution times, particularly in ced, cnn, mlp,
3mm, adi, and ppc. As discussed in Section 4.4, achieving satisfac-
tory performance on FPGAs using pragma-based optimizations
alone is challenging without extensive optimizations for each appli-
cation. For instance, the opf benchmark could not be run correctly
on FPGA with pragma-based optimization alone, requiring substan-
tial individual optimization efforts. Therefore, our optimized opf

HeteroBench

Python Numba C++ Serial

ms ™ NVIDIA A100 CUDA
1.E+5

AMD MI211 OpenMP AMD MI211 OpenACC

N
m
kS
93440.34514
57160.38803

1.E+3

25224.50132

2398.77

1.E+2

359.334
347.307
248.645
327.501
208.62
190.869

& o0
G 3 LR 2 B 3 @
T B) o m @ o N
g B o3l 28y 22 H 8 uo £ B
1.E+1 ~ - ~ o .
T CEZEE> & S R88RIFNE 2 F2m8% 4
S0 R S mAIz o =] So@no @
< o 338N ° S oN@ao~ =
- o Hooxo B Hm(ﬂ. ©
LE+0 cge
1E1
Total gaussian filter gradient intensity direction

331.133

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

C++ OpenMP NVIDIA A100 OpenMP M NVIDIA A100 OpenACC

Intel Max 1101 OpenMP Intel Max 1011 OpenACC Xilinx U280 HLS

6881.358778
290.812
492.24962
331.473
3681.840467
1117.84

© ~ o
I 9 - & S S

S © © N 3 m

I NS 0 - Q

DS owonodo N xR ©~mmwn &~ S Bowew owoso
0 om0 ma Xl SIS R~@M oS LWE VoS ON@
*BFoNmGEE SIS PINT G0N or@oYoocadE
SREEET Bl SSFBRESRTDS BERIFIRIBBE
o uBES © MNAT SN D@ [EME ®© o0 ma e
®m N <8 o o - T o ol g e 3 <o O8N

edge thinning double thresholding hysteresis

Figure 3: The execution time comparison of ced in the Log10 scale for each kernel in a single iteration.

and dgr are the only two benchmarks where the FPGA versions
outperform all others.

5.2.2 Compare Across Different Hardware Devices. In Figure. 2b,
we focus on comparing the total execution time for each benchmark
across different hardware devices using the same code (OpenMP-
enhanced) for CPUs, various GPUs, and the heterogeneous version.
The heterogeneous version was created after testing the homoge-
neous versions by selecting the fastest platform for each kernel and
combining them into the final version.

Notably, the heterogeneous versions don’t have any benchmark
kernel to run on an FPGA. As discussed earlier, we aimed to main-
tain code consistency across all versions, and under these con-
ditions, the performance of HLS implementations is suboptimal.
Assigning a single kernel to run on an FPGA within a benchmark
would degrade the overall performance rather than enhance it. Thus,
we opted to exclude FPGAs from the heterogeneous configuration
to ensure a fair and meaningful comparison of performance.

In some benchmarks, such as dgr, 3mm, and ppc, the parallel
CPU implementation performs surprisingly well, even surpassing
all GPU platforms. This could be due to the nature of the workload,
which may favor memory access patterns and reduce the overhead
of thread management on the CPU, allowing it to outperform the
GPUs in these specific cases.

As for the GPU results, the NVIDIA A100 GPU generally per-
forms the best among the three GPUs in most benchmarks, except
for the ppc benchmark, where Intel Max 1101 is nearly 25% faster
than the NVIDIA A100. Notably, the AMD MI210 consistently un-
derperforms compared to the other two GPUs in almost every test,
and it even encounters a core dump during the execution of ppc.
Since we used the same code and applied the same optimization
pragmas across all platforms, this suggests that AMD ROCm’s
OpenMP compilation optimizations lag behind those of NVIDIA
and Intel.

Moreover, the most notable result is that the heterogeneous ver-
sion is the fastest across all benchmarks (except for fully optimized
FPGA design like opf and dgr). This is expected, as the heteroge-
neous version combines the best kernels from different devices,
resulting in standout overall performance, further validating the
effectiveness of our heterogeneous approach. More detailed results
will be presented in the section 5.2.3.

Overall, the analysis in Figure. 2b highlights that no single hard-
ware platform is universally the best choice. Performance varies
significantly based on the computational characteristics of each
benchmark and the level of optimizations applied to the hardware.
While GPUs generally show strong performance, they are not al-
ways the best option, particularly when a task involves both serial
and parallel kernels. The heterogeneous version showcases the
advantages of selectively assigning kernels to the hardware best
suited for a given task, achieving optimal overall performance.

In Section 5.2.1, we discussed that on the NVIDIA A100 GPU,
the fastest code versions for the ced, mlp, and 3mm benchmarks are
OpenACC, OpenMP, and CUDA, respectively. Now, we provide a
detailed breakdown of the execution time for individual kernels
within these benchmarks as examples.

5.2.3 Profiling Details. As shown in Figure 3, OpenACC indeed
achieves the shortest total runtime on the NVIDIA A100, followed
by CUDA and then OpenMP. However, on the other two GPU plat-
forms (AMD and Intel), OpenMP outperforms OpenACC with a
noticeable margin. When analyzing the first four kernels (which
exhibit high degrees of parallelism), the performance gap between
OpenMP and OpenACC on the NVIDIA A100 is minimal. This sug-
gests that AMD and Intel GPUs are better optimized for OpenMP
in highly parallel workloads, while NVIDIA offers comparable opti-
mization for both OpenMP and OpenACC.

For CUDA, performance on the NVIDIA GPU varies depending
on the kernel parallelism. For instance, CUDA outperforms the
other two versions in the highly parallel gradient intensity
direction kernel but falls behind in the less parallel double
thresholding kernel. This variability reflects the strengths of
CUDA for fine-tuned, low-level parallel optimizations, which de-
pend heavily on the parallel structure of the code.

A particularly interesting case is the hysteresis kernel. Since
this kernel has little to no parallelism, it theoretically should run
serially. However, for the sake of code consistency, we still applied
parallel pragmas to it. The results are surprising. On the CPU, C++
OpenMP shows almost no speedup over the serial version, and
on AMD and Intel GPUs, OpenMP offers no improvement or even
slows down the execution. This outcome aligns with expectations,
as compilers are generally designed to ignore parallel directives for

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

non-parallel workloads. Similarly, OpenACC demonstrates minimal
speedup on AMD and Intel GPUs.
H NVIDIA A100 CUDA

AMD MI211 OpenMP
Intel Max 1011 OpenACC

NVIDIA A100 OpenMP
AMD MI211 OpenACC

B NVIDIA A100 OpenACC
Intel Max 1101 OpenMP

1.E+5

1.E+4

12677
13008.4

1.E+3

5698.79
1983.78
1902.02

5347.4
5680.7
1912.74
5364.52
662.311
5663.32
354.998
1883.98
1965.09
659.13
1664.29

1.E+2

LE+ I I I I
LEO

Total mm_0 mm_1

1227.65
662.336

436.163
436.487

mm_2

Figure 4: The execution time comparison of 3mm in the Log10
scale for each kernel in a single iteration.

Unexpectedly, the NVIDIA GPU delivers excellent performance
for all three code versions, even for this low-parallelism kernel. In
particular, the OpenACC version achieves up to a 15x speedup. This
is also why the OpenACC version is the fastest in terms of total time
comparison. One possible reason could be that the nvc++ compiler is
better optimized for managing such low-parallelism code segments,
efficiently offloading them to GPU cores. Another explanation could
involve NVIDIA’s architecture handling lightweight tasks more
gracefully, minimizing the overhead associated with launching
parallel threads. This unique behavior highlights NVIDIA’s superior
support for various types of workloads, even those with limited
parallelism, compared to other vendors.

Another example, shown in Figure 4, is the 3mm benchmark,
which further supports our earlier observations. Each kernel in 3mm
exhibits a high degree of parallelism. Similar to the ced example,
the performance difference between OpenACC and OpenMP on the
NVIDIA A100 GPU is minimal. However, on AMD and Intel GPUs,
OpenMP outperforms OpenACC. The high level of parallelism also
enables CUDA to perform exceptionally well, achieving double the
speed of the other two implementations on the same platform.

Figure 5 presents the results of testing the heterogeneous imple-
mentation on another server featuring an Intel Core 13900K and
an NVIDIA RTX 3090, chosen specifically to evaluate the portabil-
ity of our benchmark suite across different hardware setups. The
benchmark results follow a similar pattern to those in Figure 2,

ms
1.E+4
1.E+3 "
=& o
&]
- %9 a
=3 3 B
1.E+2 N
67}
wn
Deo o <
© o &
1E+1 wIR8 SR ko
IR P S5cea22n
< QNGNS Om Ol RS s@ O N
Noaog™N o VMoo s N q
Seas o Mo ™
o0 - ~ o o
1.E+0 =
C++ OpenMP NVIDIA 3090 OpenMP Hetero CPU+GPU Good

Hongzheng Tian et al.

though the NVIDIA A100 in Figure 2 consistently performed better
than the heterogeneous implementation on the RTX 3090. By select-
ing a platform with a smaller performance gap between the CPU
and GPU, we aimed to highlight the advantages of heterogeneous
execution better.

Our analysis of the homogeneous versions revealed that the
gradient_xy_calc kernel performs optimally on the GPU, while
other kernels execute more efficiently on the CPU. Following this
insight, we deployed these eight kernels between the CPU and
GPU accordingly, opting to use the OpenMP version on the GPU
for simplicity, as it demonstrated minimal performance difference
compared to OpenACC or CUDA. As shown in the third group
of Figure 5, this approach achieved a final runtime of 175.325 ms,
which is faster than the two homogeneous versions, demonstrating
the advantage of effective heterogeneous execution.

However, heterogeneous designs do not consistently outperform
homogeneous configurations. If kernels are assigned to hardware
accelerators without careful consideration, or if hardware changes
occur within the system, the overall runtime may increase signifi-
cantly, as illustrated in the fourth and fifth groups in Figure 5. In
the worst case, the final result can even be up to 40% slower than
the C++ OpenMP implementation running solely on the CPU. This
result highlights the significance of selective kernel placement and
the requirement for system-specific tailoring to achieve optimal
performance. Effective heterogeneous execution relies on tailored
configurations to fully leverage hardware capabilities.

5.3 Variability Analysis

To demonstrate some of the deeper insights that can be gleaned
from HeteroBench, we analyzed the variability in performance
measured across several combinations of kernels and platforms.
Figure 6 shows the distributions of kernel run times as standard
box plots. We can make several observations from these data:

e Long-tailed distributions: Most run times are long-tailed, mean-
ing the bulk of the measurements are concentrated around the
median while several outliers pull the mean performance to the
right, significantly affecting the overall mean. This indicates that
typical runs are “normal” or “fast”, centered in a narrow band
around the median, but any introduction of delay can cause a
noticeable slowdown. This behavior represents both a challenge

Total

gradient_xy_calc

3 .
Q o N e gradient_z_calc
©o . .
S g gradient_weight_y
8 3
~ gradient_weight_x
= 9 o - -
oo o) o) L0 1<t oo
o w o |S S b [outer_product
= s =TI
o & - & M tensor_weight_y
o LU - -
0 .
= tensor_weight_x

Hetero CPU+GPU Subpar Hetero CPU+GPU Poor flow_calc

Figure 5: The execution time comparison between homogeneous and heterogeneous implementations of opf in the Log10 scale
for each kernel in a single iteration on NVIDIA RTX 3090. The bars with solid borders denote the kernels run on GPU.

HeteroBench

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

CPU/OpenMP GPU/CUDA GPU/OpenACC GPU/OpenMP
= {Jo—memene o IS . $o .
&
s o - - . .o i
o JICHEN - 4 - &
o
ESN
S » ¥ . .
&
e B v - =
& é\ei{z&- — o @ commme - I » -
Csae - P e . 8
?@\0\/- . . * -
E
& 3 * ’ . .
Q\é\é\ou - ’ . -
0
S R e .o . -
NGE — O F- F- o
RS - oo > . e
Fab ¢ t
ob\é\ & o . *
N 'Ot\(\d
%&é‘&\g + - . .
Q@:@(\\ é}\é\\b o S . .
Q@b'b&i@o
S
RS L Teb— L * +
\\'@ - * . * * e
A &
S T e b ; ;
RN
609‘\\\\) T T T T T T T T T T T T T T
%&fz@ 1 10 100 1000 1 10 100 1 10 100 1 3 10 30
& Ti
& ime (ms)
O

Figure 6: Run time distributions as box plots across four benchmarks with multiple kernels and four platforms (n=200, log-scale).
Vertical bars represent 25 h 50th, and 75" percentiles while black diamonds represent mean performance.

and an opportunity. One slow kernel can adversely affect the en-
tire system’s performance, while debugging the most egregious
outliers can lead to the diagnosing of system or software improve-
ments that could reduce both run time and its unpredictability.

e CPU vs. GPU runtimes: CPU run times for these kernels are
not only significantly slower than GPU, as we had noted be-
fore, but their variability is also much higher. Some CPU-based
kernels such as gradient_magnitude exhibit outliers that are or-
ders of magnitude slower than the typical (median) performance,
which is uncommon for their GPU counterparts. All GPU distri-
butions appear more clustered and symmetric than most CPU
distributions, with the mean and the median nearly identical.
The reason for this difference is likely the complexity of the CPU
environment, which is shared by other processes and managed
by a mercurial operating system, leading to many more potential
slowdown events, as noted before.

e OpenACC performance: Among the GPU frameworks, Ope-
nACC appears to offer the lowest variability and smallest outliers
(keeping in mind the logarithmic scale of the x-axis). In envi-
ronments where performance predictability is as important as
performance magnitude, this could be an important consideration
when picking a framework.

o Kernel variability: Some kernels exhibit much higher variabil-
ity than others, especially on CPUs (e.g., softmax and matmul
kernels within the same oha application). This heterogeneity may
again be interrelated with the different compute resources used
by each kernel and how sensitive they are to interference and
noise, offering another clue towards optimization.

This analysis highlights the variability in kernel runtimes and
the need for understanding performance characteristics, allowing

developers to optimize applications for better performance and
efficiency across heterogeneous computing environments.

6 Discussion

This section addresses some aspects that may require further clari-
fication based on our design choices and the motivation for devel-
oping HeteroBench.

6.1 Motivation for Developing HeteroBench

The primary motivation for designing HeteroBench is to address
the lack of comprehensive benchmark suites for heterogeneous
HPC systems. Most existing benchmarks are designed for homo-
geneous platforms—either focusing on GPUs, FPGAs, or CPUs in
combination with one of the accelerators. Very few existing suites
offer a unified approach that evaluates all three types of devices,
making it difficult for researchers and developers to assess and
optimize workloads for truly heterogeneous systems.

Even in cases where heterogeneous systems are supported, the
entire application is typically executed on a single accelerator with-
out the flexibility to distribute tasks across multiple devices. In
scenarios where users want to deploy an application across multi-
ple accelerators, they must manually partition the workload and
assign individual tasks to specific devices, a process that is often
labor-intensive and complex, and significantly increase develop-
ment effort and limit the practical usability of heterogeneous plat-
forms. To enable comprehensive and efficient benchmarking, it is
essential to provide a solution that supports flexible task distribu-
tion across multiple hardware components.

To address these challenges, HeteroBench deliberately excludes
single-kernel benchmarks, such as SPMV or K-means, commonly

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

found in traditional benchmark suites. These benchmarks pose sig-
nificant challenges for task partitioning due to their single-kernel
structure. Instead, it features multi-kernel benchmarks, enabling
users to explore efficient task partitioning, workload balancing,
and heterogeneous execution strategies. By offering a comprehen-
sive and adaptable benchmark suite, HeteroBench empowers re-
searchers to develop, evaluate, and optimize scalable computing
solutions for heterogeneous architectures, fostering innovation and
efficiency in high-performance computing.

6.2 Ensuring Code Consistency and Fair
Comparisons

Another key aspect of our design is the inclusion of multiple ver-
sions for each benchmark, with consistent code structure across
versions, apart from necessary pragma-based optimizations. This
consistency minimizes performance differences caused by code
variations and ensures that performance comparisons reflect the
actual impact of different compilers, programming models, and
hardware devices. By standardizing the codebase across different
versions, we create a fair and reliable foundation for evaluating
heterogeneous computing systems.

A common challenge faced by many existing benchmark suites
is their tendency to optimize code specifically for a single accelera-
tor to maximize performance. While such optimizations can yield
impressive results on individual devices, they introduce bias when
comparing performance across multiple platforms. They raise a
fundamental question: does the observed performance improve-
ment result from superior hand-tuned code design, compiler opti-
mizations, or better hardware itself? Without a uniform structure,
distinguishing between these factors becomes difficult, leading to
potentially misleading conclusions.

For instance, to evaluate the efficiency of multiple processors,
a reliable approach is to run identical instruction sets rather than
tailoring workloads to each processor’s strengths. In line with this
principle, HeteroBench ensures that all benchmark versions main-
tain a consistent core structure, allowing for fair, meaningful, and
unbiased performance comparisons across a variety of devices and
programming models. This approach enhances the reliability of
benchmarking results and supports objective assessments in het-
erogeneous computing environments.

6.3 Balancing Portability and Optimization

To ensure portability across a wide range of computing platforms,
HeteroBench primarily relies on OpenMP, a widely adopted API
that enables parallelization on both CPUs and GPUs with minimal
code changes. OpenMP provides a high-level abstraction, making it
easier for developers to write parallel code that can seamlessly run
on different hardware architectures without requiring extensive
rewrites.

Hongzheng Tian et al.

In addition to OpenMP, we also provide CUDA versions for all
benchmarks to explore the full performance potential achievable
with NVIDIA’s low-level programming model. To further diver-
sify our benchmark suite and assess alternative GPU programming
models, we have also integrated OpenACC versions to further di-
versify the suite and examine other GPU programming paradigms.
OpenACC provides a directive-based approach, similar to OpenMP,
but is specifically designed for offloading computations to GPUs
with minimal programming complexity.

Looking ahead, we plan to extend HeteroBench by incorporating
additional APIs such as HIP (for AMD GPUs) and OpenCL (for
broader device support across AMD, Intel, and other vendors). This
expansion will further enhance the portability, flexibility and ver-
satility of HeteroBench, making it a valuable tool for evaluating
modern heterogeneous computing systems across a wide spectrum
of hardware architectures.

7 Conclusion and Future Work

In this paper, we introduced HeteroBench, a comprehensive hetero-
geneous benchmark suite comprising several multi-kernel bench-
marks, designed to evaluate performance across multiple hardware
backends, including CPUs, GPUs, and FPGAs. Unlike traditional
benchmark suites that focus on homogeneous architectures or a sin-
gle type of accelerator, HeteroBench is built to support applications
utilizing diverse compute kernels, enabling more realistic perfor-
mance assessments for diverse workloads. By providing implemen-
tations in both Python and C++, HeteroBench accommodates a
wide range of users, from researchers exploring high-level algorith-
mic optimizations to developers fine-tuning low-level hardware
performance.

Extensive tests on multiple servers with varying hardware con-
figurations yield precise profiling results that demonstrate Heter-
oBench’s effectiveness in assessing performance in heterogeneous
computing systems. HeteroBench offers valuable insights for HPC
professionals, enabling the testing, tuning, and optimization of
HPC and ML frameworks for enhanced efficiency and performance
across heterogeneous hardware.

Moving forward, we plan to expand HeteroBench by introducing
new benchmarks, advanced parallelization techniques, and opti-
mizations for emerging heterogeneous platforms. Additionally, we
aim to incorporate energy consumption measurements, offering a
more comprehensive evaluation of energy-performance trade-offs
across different accelerators. By integrating both performance and
sustainability considerations, HeteroBench will evolve into a holis-
tic benchmarking framework, addressing the growing demands of
modern heterogeneous computing.

Acknowledgments

This work is partially supported by the National Science Foundation
Award number 2443992.

HeteroBench

A Appendices

We briefly introduce the benchmarks used in this study. For each
case we enumerate the distinct computational stages that justify
the inclusion of these benchmarks in our HeteroBench suite.

A.1 Canny Edge Detection (ced)

Canny Edge Detection [6] is a fundamental image processing algo-
rithm used to detect edges. The algorithm has five interdependent
and computationally intensive stages: gaussian filtering, gradient
intensity and direction calculation, edge thinning, double thresh-
olding, and edge tracking by hysteresis. Each stage has its specific
computational focus. For instance, the Gaussian filter stage involves
significant nested for-loops to smooth the image and remove noise,
while the edge thinning stage features numerous switch-case state-
ments to refine the edge detection.

A.2 Sobel Filter (sbf)

Sobel Filter [27] applies a convolutional kernel to an image to detect
edges and includes three main stages: detecting horizontal and
vertical edges in the first two stages by applying 3x3 convolution
kernels, and computing the gradient magnitude in the third stage.

A.3 Optical Flow (opf)

Optical Flow [39] is used to estimate the motion of objects between
consecutive image frames. This benchmark involves multiple stages,
including the computation of gradients in the x, y, and z directions,
applying gradient and tensor weightings, computing the outer prod-
uct of gradient vectors, and calculating the optical flow vectors.

A.4 Convolutional Neural Network (cnn)

Convolutional Neural Network (CNN) represents a deep learning
model widely used in image recognition and classification. It in-
cludes several key operations: convolution, ReLU activation, max
pooling, input padding, dot product and addition in fully connected
layers, and the softmax function in the output layer.

A.5 Multi-layer Perceptron (mlp)

The Multi-layer Perceptron (MLP) is a classic neural network with
multiple layers, where each node in one layer connects to every
node in the next, facilitating dense and parallelizable computations.
This benchmark evaluates accelerator performance when perform-
ing dense matrix operations and neural network computations. Our
mlp benchmark includes four layers: the first three perform dot
product and addition operations followed by a sigmoid activation,
and the fourth layer performs dot product and addition operations
followed by a softmax function.

A.6 Digit Recognition (dgr)

Digit Recognition [39], a classic machine learning task involving
classifying handwritten digits using a neural network model trained
on the MNIST [37] dataset. This benchmark measures accelerator
performance in neural network inference, which includes multiple
layers of matrix multiplications and activations. The benchmark
includes two primary kernels: one updates the k-nearest neighbors

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

list for each input digit, and the other performs the voting process
to determine the final classification using these neighbors.

A.7 One Head Attention (oha)

The One Head Attention benchmark is based on the attention mech-
anism [33] used in the general transformer model within large lan-
guage models. This benchmark implements a single attention head,
whose attention score is given by:

. (QKT)
Attention(Q, K, V) = softmax v (1)
dje

where Q, K, and V are the query, key, and value matrices, respec-
tively, and dy is the dimension of the key vectors. In our imple-
mentation, there are three main compute kernels: softmax, matrix
multiplication, and transpose. This benchmark provides valuable
insights into the scalability of single-head attention computation,
which is essential for optimizing transformer models on different
computing architectures.

A.8 Spam Filter (spf)

The Spam Filter [39] application classifies email messages as spam
or not using a machine learning model. The benchmark includes
several computing stages: calculating the dot product, applying the
sigmoid activation function, computing gradients, and updating
parameters, which are essential for training and inference in text
classification models.

A.9 3 Matrix Multiplications (3mm)

The 3 Matrix Multiplications application involves three consecutive
matrix multiplication operations: G = (A X B) x (C x D). This
benchmark tests system performance in handling multiple dense
linear algebra operations, which is crucial in many scientific and
engineering applications.

A.10 Alternating Direction Implicit (adi)

Alternating Direction Implicit [20] solves partial differential equa-
tions by breaking down a multidimensional problem into a series of
more manageable one-dimensional problems. In our implementa-
tion, although the core computation is primarily handled by a single
kernel, the presence of the initialization kernel justifies treating
this benchmark as a multi-kernel application.

A.11 Parallelize Particle (ppc)

Parallelize Particle is a benchmark extensively used in simulations.
It includes two main kernels: one to calculate the interaction forces
between the particles and another to update their positions and ve-
locities. Both kernels contain several sub-computational tasks that
need to be parallelized effectively to achieve optimal performance.
This benchmark is ideal for evaluating the scalability and efficiency
of heterogeneous hardware accelerators in large-scale simulations
due to the inherently parallel nature of particle simulations.

References

[1] AMD. 2016. AMD ROCm™ Software. https://www.amd.com/en/products/
software/rocm.html

[2] AMD. 2023. Alveo U280 Data Center Accelerator Card User Guide. https:
//docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel

https://www.amd.com/en/products/software/rocm.html
https://www.amd.com/en/products/software/rocm.html
https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel
https://docs.amd.com/r/en-US/ug1314-alveo-u280-reconfig-accel

ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

(3]
(4]

(6]

[7

[

(8]

(9]

[10]

(11

[12]

[13]

[14

[15]

[16

[17]

(18]

[19]

[20]

AMD. 2024. Working with Variable Loop Bounds in Vitis HLS. https://docs.amd.
com/r/en-US/ug1399-vitis-hls/Working- with- Variable-Loop-Bounds

Krste Asanovi¢, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. 2006. The Landscape of
Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183. UC, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

Najmeh Nazari Bavarsad, Hosein Mohammadi Makrani, Hossein Sayadi,
Lawrence Landis, Setareh Rafatirad, and Houman Homayoun. 2021. HosNa:
A DPC++ Benchmark Suite for Heterogeneous Architectures. In 2021 IEEE 39th
International Conference on Computer Design (ICCD). IEEE Computer Society, Los
Alamitos, CA, USA, 509-516. doi:10.1109/ICCD53106.2021.00084

John Canny. 1986. A Computational Approach to Edge Detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-8, 6 (1986), 679-698.
doi:10.1109/TPAMI.1986.4767851

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC) (ISWC *09). IEEE Computer Society, USA, 44-54. doi:10.
1109/IISWC.2009.5306797

Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai,
and Zhiru Zhang. 2024. Allo: A Programming Model for Composable Accelerator
Design. Proceedings of the ACM on Programming Languages 8 (2024), 593-620.
Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. 2018. Understanding Performance Differences of FPGAs and GPUs.
In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE Computer Society, Los Alamitos, CA, USA,
93-96. doi:10.1109/FCCM.2018.00023

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE computational science and engineering 5,
1(1998), 46-55.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable
Heterogeneous Computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units (Pitts-
burgh, Pennsylvania, USA) (GPGPU-3). Association for Computing Machinery,
New York, NY, USA, 63-74. doi:10.1145/1735688.1735702

Juan Gomez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Flores, Simon Gar-
cia de Gonzalo, Thomas B. Jablin, Antonio J. Pena, and Wen-mei Hwu. 2017.
Chai: Collaborative heterogeneous applications for integrated-architectures. In
2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE Computer Society, Los Alamitos, CA, USA, 43-54.
doi:10.1109/ISPASS.2017.7975269

Vinh Quoc Hoang and Yuhua Chen. 2023. Cost-effective network reordering
using FPGA. Sensors 23, 2 (2023), 819.

Sitao Huang, Li-Wen Chang, Izzat E] Hajj, Simon Garcia de Gonzalo, Juan Gomez-
Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan Milojicic, Onur
Mutlu, Deming Chen, and Wen-mei Hwu. 2019. Analysis and Modeling of
Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures.
In Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering (Mumbai, India) (ICPE ’19). Association for Computing Machinery,
New York, NY, USA, 79-90. doi:10.1145/3297663.3310305

Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming Chen, and Wen-
Mei Hwu. 2021. PyLog: An Algorithm-Centric Python-Based FPGA Programming
and Synthesis Flow. IEEE Trans. Comput. 70, 12 (Dec. 2021), 2015-2028. doi:10.
1109/TC.2021.3123465

Intel. 2020. oneAPI: A New Era of Heterogeneous Computing. https://www.intel.
com/content/www/us/en/developer/tools/oneapi/overview.html#gs.c6xt5d
Mark Klaisoongnoen, Nick Brown, and Oliver Thomson Brown. 2022. Low-
power option Greeks: Efficiency-driven market risk analysis using FPGAs. In
Proceedings of the 12th International Symposium on Highly-Efficient Accelerators
and Reconfigurable Technologies (Tsukuba, Japan) (HEART °22). Association for
Computing Machinery, New York, NY, USA, 95-101. doi:10.1145/3535044.3535059
Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch,
Nicolai Stawinoga, Peter Thoman, Thomas Fahringer, and Vincent Heuveline.
2020. SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heteroge-
neous Computing. In Euro-Par 2020: Parallel Processing, Maciej Malawski and
Krzysztof Rzadca (Eds.). Springer International Publishing, Cham, 629-644.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based
Python JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. doi:10.1145/2833157.2833162
Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
2017. DataRaceBench: a benchmark suite for systematic evaluation of data race

[21

&
&,

[

[25]

[26

[27

[28

[29

[30

[31

[33

(34

(39]

Hongzheng Tian et al.

detection tools. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’17).

Association for Computing Machinery, New York, NY, USA, Article 11, 14 pages.
doi:10.1145/3126908.3126958

Perhaad Mistry, Yash Ukidave, Dana Schaa, and David Kaeli. 2013. Valar: a
benchmark suite to study the dynamic behavior of heterogeneous systems. In
Proceedings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units (Houston, Texas, USA) (GPGPU-6). Association for Computing
Machinery, New York, NY, USA, 54-65. doi:10.1145/2458523.2458529

Nvidia. 2007. Nvidia CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
Pallets. 2024. jinja2 template engien. https://jinja.palletsprojects.com/en/stable/
Louis-Noel Pouchet. 2012. Polybench/c. https://web.cs.ucla.edu/~pouchet/
software/polybench/

Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium on Workload Characterization
(ISWC). IEEE Computer Society, Los Alamitos, CA, USA, 110-119. doi:10.1109/
IISWC.2014.6983050

Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery,
New York, NY, USA, 1617-1632. doi:10.1145/3318464.3380595

Irwin Sobel and Gary Feldman. 1968. An Isotropic 3x3 Image Gradient Oper-
ator. Presented at the Stanford Artificial Intelligence Project (SAIL). https:
//en.wikipedia.org/wiki/Sobel_operator Later popularized as the Sobel operator
for edge detection in image processing.

Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li, Saoni
Mukherjee, Carter Mccardwell, Alejandro Villegas, and David Kaeli. 2016. Hetero-
mark, a benchmark suite for CPU-GPU collaborative computing. In 2016 IEEE
International Symposium on Workload Characterization (ISWC). IEEE Computer
Society, Los Alamitos, CA, USA, 1-10. doi:10.1109/IISWC.2016.7581262
Xiaoyong Tang and Zhuojun Fu. 2020. CPU-GPU utilization aware energy-
efficient scheduling algorithm on heterogeneous computing systems. IEEE Access
8 (2020), 58948-58958.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: an intermediate lan-
guage and compiler for tiled neural network computations. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages (Phoenix, AZ, USA) (MAPL 2019). Association for Computing
Machinery, New York, NY, USA, 10-19. doi:10.1145/3315508.3329973

Bora Ucar, Cevdet Aykanat, Kamer Kaya, and Murat Ikinci. 2006. Task assign-
ment in heterogeneous computing systems. Journal of parallel and Distributed
Computing 66, 1 (2006), 32-46.

Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, and Shiv Udkar.
2023. Comparative Study of FPGA and GPU for High-Performance Computing
and AL ESP International Journal of Advancements in Computational Technology
(ESPIJACT) 1, 1 (2023), 37-46.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000-6010.

Qiang Wang, Pengfei Xu, Yatao Zhang, and Xiaowen Chu. 2017. EPPMiner: An
Extended Benchmark Suite for Energy, Power and Performance Characterization
of Heterogeneous Architecture. In Proceedings of the Eighth International Confer-
ence on Future Energy Systems (Shatin, Hong Kong) (e-Energy ’17). Association for
Computing Machinery, New York, NY, USA, 23-33. doi:10.1145/3077839.3077858
Xilinx. 2020. Xilinx Runtime Native APIs. https://xilinx.github.io/XRT/master/
html/xrt_native_apis.html

Xilinx. 2024. Vitis High-Level Synthesis.
design-tools/vitis/vitis-hls.html
Christopher J.C. Burges Yann LeCun, Corinna Cortes. 1994. THE MNIST DATA-
BASE of handwritten digits.

Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level Syn-
thesis Framework on Multi-Level Intermediate Representation. In 2022 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA). IEEE
Computer Society, Los Alamitos, CA, USA, 741-755. doi:10.1109/HPCA53966.
2022.00060

Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin,
Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez, Wen-
ping Wang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis
Benchmark Suite for Software Programmable FPGAs. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Mon-
terey, CALIFORNIA, USA) (FPGA ’18). Association for Computing Machinery,
New York, NY, USA, 269-278. doi:10.1145/3174243.3174255

https://www.xilinx.com/products/

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Working-with-Variable-Loop-Bounds
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Working-with-Variable-Loop-Bounds
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1109/ICCD53106.2021.00084
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/FCCM.2018.00023
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1109/ISPASS.2017.7975269
https://doi.org/10.1145/3297663.3310305
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/TC.2021.3123465
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.c6xt5d
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.c6xt5d
https://doi.org/10.1145/3535044.3535059
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1145/2458523.2458529
https://developer.nvidia.com/cuda-toolkit
https://jinja.palletsprojects.com/en/stable/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1145/3318464.3380595
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://doi.org/10.1109/IISWC.2016.7581262
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3077839.3077858
https://xilinx.github.io/XRT/master/html/xrt_native_apis.html
https://xilinx.github.io/XRT/master/html/xrt_native_apis.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://doi.org/10.1109/HPCA53966.2022.00060
https://doi.org/10.1109/HPCA53966.2022.00060
https://doi.org/10.1145/3174243.3174255

	Abstract
	1 Introduction
	2 Related Work
	2.1 Heterogeneous Benchmark Suites with Single-type Accelerators
	2.2 Heterogeneous Benchmark Suites with Multi-type Accelerators
	2.3 Role of Python in Benchmark Development

	3 The HeteroBench Suite Description
	4 Design and Implementation
	4.1 Python and Serial C++ Code Design
	4.2 Parallel C++ Code Design
	4.3 CUDA Code Design
	4.4 HLS C++ Code Design
	4.5 HeteroBench Top Design

	5 Evaluation and Results
	5.1 Lines of Code Comparison
	5.2 Profiling Results
	5.3 Variability Analysis

	6 Discussion
	6.1 Motivation for Developing HeteroBench
	6.2 Ensuring Code Consistency and Fair Comparisons
	6.3 Balancing Portability and Optimization

	7 Conclusion and Future Work
	Acknowledgments
	A Appendices
	A.1 Canny Edge Detection (ced)
	A.2 Sobel Filter (sbf)
	A.3 Optical Flow (opf)
	A.4 Convolutional Neural Network (cnn)
	A.5 Multi-layer Perceptron (mlp)
	A.6 Digit Recognition (dgr)
	A.7 One Head Attention (oha)
	A.8 Spam Filter (spf)
	A.9 3 Matrix Multiplications (3mm)
	A.10 Alternating Direction Implicit (adi)
	A.11 Parallelize Particle (ppc)

	References

