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ABSTRACT
Mutation and recombination operators play a key role in determining the performance
of Genetic and Evolutionary Algorithms (GEAs). Prior work has analyzed the effects
of these operators on genotypic variation, often using locality metrics that measure the
sensitivity and stability of genotype-phenotype representations to these operators. In
this paper, we focus on an important subset of representations, namely nonredundant
bitstring-to-integer representations, and analyze them through the lens of Rothlauf’s
widely used locality metrics. Our main research question is, does strong locality predict
good GEA performance for these representations? Our main findings, both theoretical
and empirical, show the answer to be negative. To this end, we define locality metrics
equivalent to Rothlauf’s that are tailored to our domain: the point locality for single-bit
mutation and general locality for recombination.With these definitions, we derive tight
bounds and a closed-form expected value for point locality. For general locality we show
that it is asymptotically equivalent across all representations and operators. We also
reproduce three established GEA empirical results to understand the predictive power
of point locality on GEA performance, focusing on two popular and often juxtaposed
representations: standard binary and binary-reflected Gray.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence
Keywords Genetic and evolutionary algorithms, Locality, Binary-integer representations, Gray
encoding, Binary encoding

INTRODUCTION
Genetic and Evolutionary Algorithms (GEAs) solve optimization and search problems
by codifying a population of possible solutions, evaluating their fitness in solving the
problem, and iteratively modifying them in an attempt to improve their fitness. The digital
manifestation of the solutions are called genotypes, and their interpretations into the
specific problem domain are called phenotypes. The function that maps from genotypes
to phenotypes is simply called the representation, and it can have a significant impact on
the success and speed of the GEA to approximate optimal solutions (Doerr, Klein & Storch,
2007; Jansen, Oliveto & Zarges, 2013). Consequently,many empirical and theoretical studies
investigated the effects of representation on GEA performance under different operators
that modify genotypes. The No Free Lunch Theorems can be interpreted to show that no
single representation has a performance advantage for all optimization problems (Wolpert
& Macready, 1997).
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A key component of evolution, both biological (Mitchell-Olds, Willis & Goldstein, 2007)
and computational (Goldberg, Deb & Clark, 1992), is the variation of genotypes. Perhaps
the most common operator for variation in GEAs is mutation, which may be combined
with another operator, recombination (Bäck, Fogel & Michalewicz, 2018). There are various
implementations of the mutation operator, but typically they embody a localized change
to an individual genotype. Contrast this with recombination, which requires two or more
individuals and often involves nonlocal changes to the genotypes.

One of the most commonly used variation operators is point mutation, a simple
mutation operator which randomly changes one allele at a time. There exist various forms
and parameters for point mutation that control the magnitude of the genotypic change. By
controlling this magnitude, mutation can be used in a search GEA both for exploration—
sampling many disparate parts of the search space—and for exploitation—thoroughly
searching in a localized subspace (Črepinšek, Liu & Mernik, 2013).

An important property of mutation that can increase the predictability and
interpretability of the GEA is to have ‘‘strong locality,’’ which we informally define
here as the property that small variations in the genotype lead to small variations in
the phenotype (Pereira et al., 2006). Strong locality implies better control of the GEA,
because tuning mutation for a certain magnitude of changes in the genotype—the inputs
to the search—leads to an expectation of the magnitude of changes in the phenotype—
the outcome of the search. Note that the mutation operator is intricately tied to the
representation. It is the combination of the mutation operator and representation that
determines the magnitude of phenotypic change. Often, the discussion of locality assumes
a fixed mutation operator—such as uniform bit flips or Gaussian differences—and focuses
on the representations, such as standard binary or Gray.

In his seminal book, Rothlauf (2006) presented a theoretical framework for comparing
representations based on three properties: redundancy, scaling, and locality. He proposed
two metrics to quantify the locality of representations, one specifically for point mutation
(simply called ‘‘locality’’ in the book) and one for any variation operator (called ‘‘distance
distortion’’).

This paper focuses on these metrics when applied to a widely used subclass
of representations, namely nonredundant translations from bitstring genotypes to
nonnegative integer phenotypes, such as Gray encoding (Whitley, 1999). More precisely,
we focus on representations that are one-to-one mappings from bitstrings to integers in
the range [0 : 2`). These representations are very common in practice to represent integers
and fixed-point values in GEAs, as well as vectors of such values. One example of such a
representation is standard binary encoding (SB), where the ith bit b adds a value of exactly
2b to the phenotype. Another example is binary-reflected Gray encoding (BRG), where the
genotypes of successive phenotypes vary only by one bit (Bitner, Ehrlich & Reingold, 1976).

The main purpose of this paper is to study the relationship between locality and GEA
performance for these representations. We explore this relationship both theoretically and
empirically, and show that despite some contrary claims in the literature, strong locality
does not imply good GEA performance in this domain. For example, the poor performance
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1We define locality metrics and optimality
precisely later in ‘Theoretical Results on
Point Locality’, but for now, point locality
means the mean difference in phenotype
value when genotype bits are flipped
randomly, and optimal point locality
means that no other representation in
this domain exhibits lower point locality.

of SB in some simple GEA benchmarks has been attributed to its weak locality (Rothlauf,
2006). In contrast, we claim that Gray encodings do not exhibit general and point locality
advantages over SB under the considered domain and assumptions. In fact, we prove that
both SB and BRG exhibit optimal point locality under the same benchmark conditions.1

Summary of contributions and paper outline
After surveying related work in ‘Related Work’, we examine the theoretical properties of
both locality metrics. We build on Rothlauf’s definitions for locality and distance distortion
and redefine them specifically for the domain of binary-integer representations, which we
call point locality and general locality, respectively. This lets us contribute proofs and
precise computations for the following properties:

• A tight lower bound of 2`−1
`

for any such representation on bitstrings of length `.
• A tight upper bound of 2`−1 for any such representation on bitstrings of length `.
• A proof that the point localities of SB and BRG encodings are both identical and optimal.
• An existence proof and construction algorithm for suboptimal Gray encodings.
• A closed form for the expected value of point locality across random representations.
• A lower bound and asymptotic limit for general locality.

‘Theoretical Results on Point Locality’ presents these results in higher detail than in
previous work (Shastri & Frachtenberg, 2020). To put these theoretical results in context, we
also attempt in ‘Experimental Results’ to faithfully reproduce three distinct past experiments
from three different types of GEAs that empirically compared SB’s performance to BRG’s.
These studies found BRG to generally outperform SB, and in some cases hypothesized
that this better performance is the result of stronger locality (Hinterding, Gielewski &
Peachey, 1995; Rothlauf, 2006). Here, we recreate these established findings of superior BRG
performance and then examine them in the newly proven perspective of the equivalent
locality of the two representations. Our experiments are therefore by design not new, but
rather a framework to delve deeper into the reasons for performance differences between
representations.

Then, in ‘Discussion’, we discuss these results and produce additional experimental data
and alternative explanations to BRG’s superior performance. A separate contribution of this
section is a discussion of the role of the GEA’s simulation time on dynamically varying the
representation, showing that different phases of the simulation can benefit from different
locality properties of the representation. Finally, we conclude with suggestions for future
work in ‘Conclusion and Future Work’.

RELATED WORK
The representation in a GEA is tightly linked to its performance, which led to numerous
studies working to formalize and measure the effects of representation locality (Galván-
López et al., 2011; Gottlieb et al., 2001; Gottlieb & Raidl, 1999; Jones & Forrest, 1995;
Manderick, 1991; Ronald, 1997). Many of these studies quantify locality in different ways
and apply it to different phenotype classes, such as floating-point numbers (Pereira
et al., 2006), computer programs (Galván-López et al., 2011; Rothlauf & Oetzel, 2006),
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2This definition has changed from the
book’s first edition to better match reader
intuition and for simpler computation.

permutations (Galván-López & O’Neill, 2009), and trees (Hoai, McKay & Essam, 2006;
Rothlauf & Goldberg, 1999). The focus of these approaches is often to measure the effect of
genotypic changes on fitness distances (Gottlieb & Raidl, 1999). A more general approach is
to instead measure the effect on phenotypic distances, because it provides a way to measure
the locality of a representation that is independent of the fitness function (Rothlauf, 2003).

The foundational locality definitions for our study and several others (Chiam, Goh &
Tan, 2006; Galván-López et al., 2010) come from Rothlauf’s treatise on the theory of GEA
representations (Rothlauf, 2006). Rothlauf defines the locality dm as:

dm
def
=

∑
dgx,y=d

g
min

|dpx,y−d
p
min| (ibid. Eq. 3.23), (1)

where for every two distinct genotypes x,y , dgx,y is the genotypic distance between x
and y , and dpx,y is the phenotypic distance between their respective phenotypes, based
on our choices of genotypic and phenotypic spaces. Similarly, dgmin and dpmin represent
the minimum possible distance between genotypes or phenotypes, respectively.2 For
example, for nonredundant representations of integers as bitstrings (the focus of this
paper), genotypic distances are measured in Hamming distance and phenotypic distances
use the usual Euclidean metric in N.

This definition ‘‘describes how well neighboring genotypes correspond to neighboring
phenotypes’’ (ibid. p. 77), which is valuable for measuring small genotypic changes that
typically result from mutation. Extending this notion to include large genotypic changes
(e.g., from a recombination operator), Rothlauf defines the distance distortion dc as:

dc
def
=

2
np(np−1)

np∑
i=1

np∑
j=i+1

|dpxi,xj −d
g
xi,xj | (ibid. Eq. 3.24), (2)

where np is the size of the search space, and dpxi,xj ,d
g
xi,xj are the phenotypic and genotypic

distance, respectively, between two distinct individuals xi, xj . The term 2
np(np−1)

is equal

to 1
(
np
2 )
, the proportion of each distinct pair of individuals. This definition ‘‘describes how

well the phenotypic distance structure is preserved when mapping 8p on 8g ’’, where 8p

is the phenotypic search space and 8g is the genotypic search space (ibid. p. 84).
As observed by Galván-López et al. (2011), high values of dm and dc actually denote low

locality while low values denote high locality. To avoid confusion, we will refer to low
metric values as strong locality and high metric values as weak locality.

Similar in spirit, Gottlieb & Raidl (1999) also defined a pair of locality metrics for
mutation and crossover operators calledmutation innovation and crossover innovation. They
additionally defined crossover loss, which measures the number of phenotypic properties
that are lost by crossover. These metrics are probabilistic and empirical in nature, so they
are harder to reason about analytically. But they have been demonstrated in practice to
predict GEA performance on the multidimensional knapsack problem (Pereira et al., 2006;
Raidl & Gottlieb, 2005).

In a different study, Chiam, Goh & Tan (2006) defined the concept of preservation,
which ‘‘measure[s] the similarities between the genotype and phenotype search space.’’
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Their study uses Hamming distance between genotypes and L2 norms between phenotypes
to define analogous metrics to Rothlauf’s (called proximity preservation and remoteness
preservation). Unlike Rothlauf’s metrics, their metrics look in both directions of the
genotype-phenotype mapping. The authors demonstrated with examples (as we prove
formally in the next section) that SB and BRG have the same genotype-to-phenotype
locality, but not phenotype-to-genotype locality. They also predicted, based on this
similarity, that crossover-based GEAs would perform about the same with both SB and
BRG encodings, which appears to contradict some past experimental results, as we discuss
in ‘Genetic algorithms’.

A different approach to approximating locality was given byMathias & Whitley (1994b),
and independently, byWeicker (2010) using the various norms of the phenotype-genotype
distance matrix for different representations. These studies did not draw performance
predictions from these metrics.

Another interesting aspect of locality of representation is its effect over time. Some
studies explored the effects of problems that are themselves dynamic in nature, therefore
changing their representation over time (Mueller-Bady et al., 2017; Neumann &Witt,
2015). One such study benchmarked delta coding on the same five De Jong functions as we
have. Their algorithmmonitors the population diversity, and once the population becomes
more homogeneous, it changes the representation to search different subpartitions of the
phenotypic hyperspace. This approach performed well compared to contemporaneous
state-of-the-art GEA implementations such as CHC and GENITOR (Mathias & Whitley,
1994a). Another example applied a hybrid GEA to the maximum clique problem that
changes mutation rates based on the phase of the simulation (Ouch, Reese & Yampolskiy,
2007).

For any search function, there are multiple representations that make the optimization
problem trivial (Liepins & Vose, 1990), so it makes sense to try different representations
dynamically. Whitley, Rana, and Heckendorn even computed the expected number of
local optima for a random representation (Whitley, Rana & Heckendorn, 1997). The first
two authors also introduced the concept of shifting to dynamically switch from one Gray
representation to another to escape local optima (Rana &Whitley, 1997). Barbulescu,
Watson & Whitley (2000) expanded this work by proving a bound on the number of Gray
representations available via shifting. They showed that to improve performance, the GEA
needs to shift to a dissimilar representation to the current one.

Shifting between representations occurs sequentially in these works, but can also be
evaluated in parallel using a modified island model (Skolicki & De Jong, 2004). In all these
cases, however, the different representations are either standard binary or Gray. These
studies have not explored the possibility of changing to a random representation with
different locality to evaluate its effect on GEA performance.

Whitley (2000) did compute summary statistics for any random permutation function,
but these did not include average locality. To offer a framework of understanding the effect
of arbitrary representations on locality, we also compute in ‘Expected point locality’ the
expected point locality of any random representation.
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THEORETICAL RESULTS ON POINT LOCALITY
Defining point locality
Recall Rothlauf’s definition for locality (Eq. (1)). Since we are for the moment specifically
concerned with single-bit mutations, both dgmin and dpmin are equal to 1. And since we
limit ourselves to binary-integer representations, all phenotypic distances fall in the range
[0,2`−1] and all genotypic distances fall in the range [0,`]. We can use these assumptions
to precisely define our own derived metric, point locality, using units that we find more
intuitive.

We first define a representation r : {0,1}`→[0,2`) as a bijection between the set of `-bit
bitstrings {0,1}` and the discrete integer interval [0,2`). This ensures that the representation
is not redundant –i.e., every integer in the interval [0,2`) is represented by exactly one `-bit
bitstring, and the number of search-space points np is exactly 2`. A representation r can
therefore be equivalently described as a permutation π : [0,2`)→[0,2`), where π(i)= j
if and only if the SB representation of i maps to j under r . Consequently, we can write π
as a 2`-tuple where the ith coordinate (starting at 0) is π (ith). We also use the notation ŝi
to denote the binary string produced from flipping the ith coordinate of the binary string
s∈ {0,1}`. Formally, ŝi= s⊕2i, where ⊕ denotes bitwise exclusive-or.

It is worth noting two important assumptions about this definition that limit the
generalization of our results. First, we only consider nonredundant representations,
because they are the most efficient from an information-theoretic point of view. In other
words, they represent the most phenotypic values for a given bitstring length `. Second, we
map all phenotypic values to the range [0 : 2`). This is primarily a choice of convenience.
Nonredundant phenotypes could could come in any integer range of size 2`, continuous
or not. If a representation is nonredundant or noncontinuous, our theoretical results no
longer necessarily hold. However, we believe that many practical applications of GEAs
do in fact represent integers as we have, perhaps because the SB encoding is supported
in hardware by all extant computer systems and is therefore extremely fast to translate in
practice.

We can now define the point locality pr for a nonredundant bitstring-to-integer
representation r as the average change in phenotypic value for a uniformly random
single-bit flip in the genotype. More formally:
Definition 1 The point locality pr for a representation r is pr

def
= |r(ŝi)− r(s)| ∀s ∈

{0,1}`,∀i∈ [0,`). Explicitly,

pr
def
=

∑
s
∑

i |r(ŝi)− r(s)|
2` ·`

. (3)

Note that for any given `, our definition of pr is a simple linear transformation of
Rothlauf’s dm. In our domain, dm simply sums the phenotypic distances minus one
between all distinct genotypic neighbors, while pr computes the average phenotypic
distance between all ordered pairs of genotypic neighbors. Also note that in Rothlauf’s
dm, d

p
min occurs in the summation `2` times. Coupled with the fact that dpmin= 1 in our

Shastri and Frachtenberg (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.561 6/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.561


domain, we have the relationship:

pr =
2dm+`2`

`2`
=

dm
`2`−1

+1.

Computing tight bounds for point locality
Our first analysis proves lower and upper bounds on pr , computes pr for SB and Gray
representations, and verifies the existence of representations with both minimum and
maximum pr .

Lower bound
Theorem 1 (Lower bound): pr ≥ 2`−1

`
for nonredundant binary-integer representations,

Proof We reduce the problem of minimizing locality to another problem, that of
enumerating nodes on a hypercube while minimizing neighbor distances, for which lower
and upper bounds have been established by Harper (1964). We use the term 1ij

def
= |i− j|

to denote the absolute difference between the numbers assigned to two adjacent vertices i
and j on the unit `-cube. The unit `-cube consists of all elements in {0,1}`. Two vertices
in the `-cube are adjacent if they differ by only one bit (i.e., they have Hamming distance
1). Note that assigning a number n to a vertex i can be thought of as a representation r
mapping i to n, or r(i)= n. Therefore, we have 1ŝis= |r(ŝi)− r(s)| for adjacent vertices ŝi
and s, since a 1-bit difference is equivalent to a single bit-flip mutation. Following Harper
(1964), we define the sum

∑
1ŝis to be the sum of the absolute difference between two

adjacent vertices ŝi and s that runs over all possible pairs of neighboring vertices in the
`-cube. Note that

2
∑

1ŝis=
∑
s

∑
i

|r(ŝi)− r(s)|,

since the RHS computes |r(ŝi)− r(s)| twice for every ordered pair.
Harper proved that

∑
1ŝis≥ 2`−1(2`−1). Therefore,

pr =
∑

s
∑

i |r(ŝi)− r(s)|
2` ·`

=
2
∑
1ŝis

2` ·`

≥
2(2`−1(2`−1))

2` ·`
(ibid.)

=
2`−1
`

,

proving that pr ≥ 2`−1
`

.

Corollary 2 Standard binary encoding is optimal, meaning that it has the strongest (lowest)
point locality, equal to 2`−1

`
.
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Proof We prove optimal locality by direct computation of the sum of distances for this
encoding. SB encoding is also a representation—call it SB. We consider pSB:

pSB=
∑

s
∑

i |SB(ŝi)−SB(s)|
2` ·`

.

The inner sum
∑

i|SB(ŝi)−SB(s)| computes the sum of all differences obtained from
flipping the ith bit of a given SB string s. Flipping the ith bit elicits an absolute phenotypic
difference of 2i for any s and i, reducing the inner sum to:∑
i

|SB(ŝi)−SB(s)| =
`−1∑
i=0

2i= 2`−1.

Now since there are 2` elements in {0,1}`, the outer sum reduces to
∑

s(2
`
− 1)=

(2`)(2`−1). Combining these lets us compute pSB:

pSB=
∑

s
∑

i |SB(ŝi)−SB(s)|
2` ·`

=
2`(2`−1)

2` ·`

=
2`−1
`

,

which is the lower bound given by Theorem 1. Thus, SB has optimal point locality. �

Upper bound
Theorem 3 (Upper bound): pr ≤ 2`−1 for nonredundant binary-integer representations,

Proof We rely on another result from Harper (1964) in which he proved that
∑
1ŝis ≤

`22(`−1). We have

pr =
∑

s
∑

i |r(ŝi)− r(s)|
2` ·`

=
2
∑
1ŝis

2` ·`

≤
2(`22(`−1))

2` ·`
(ibid.)

=
22(`−1)

2`−1

= 2`−1.

Thus pr ≤ 2`−1. �

Claim 4 There exists a nonredundant binary-integer representation r with upper bound
point locality pr = 2`−1.

Proof Here, we reduce the problem of constructing a representation r with upper bound
locality pr = 2`−1 to that of assigning integers in [0,2`) to vertices in the `-cube, such
that

∑
1ŝis is maximized. Harper (1964) constructed an algorithm assigning numbers to

vertices to maximize
∑
1ŝis, shown in Algorithm 1. Maximizing

∑
1ŝis is equivalent to

maximizing pr , so such a representation exists.
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Algorithm 1:Harper’s algorithm to assign integers on the `-cube to maximize∑
1ŝi,s, the sum of neighbor differences. The function assign(v,n) assigns the

number n to `-cube vertex v . |v|1 denotes the number of ‘1’ bits in vertex v .

1 V←{0,1}`;
2 s← randomly selected node from V ;
3 assign(s,0);
4 parity←|s|1mod 2;
5 L1← randomly shuffled [1,...,2`−1−1];
6 L2← randomly shuffled [2`−1,...,2`−1];
7 i← 0;
8 j← 0;
9 for v ∈V \{s} do
10 if |v|1mod 2= parity then
11 assign(v ,L1[i]) ;
12 i← i+1;
13 else
14 assign(v ,L2[j]) ;
15 j← j+1;

Computing point locality for Gray encodings
Gray encodings are encodings where two phenotypic neighbors are also genotypic
neighbors. In our domain, this means that any two phenotypes that are separated by
one unit are represented by two genotypes that are separated by one bit flip. For a given
length `, there are multiple Gray encodings, but the most common is BRG. Here, we show
that BRG has equivalent point locality to SB, and that not all Gray encodings share the
same locality value.

Point locality of BRG
Claim 5 Binary Reflected Gray (BRG) encoding is also optimal.

This claim can be derived from Harper’s construction algorithm for optimal
representations, which can be shown to also construct BRG. Instead, we show an original
proof by induction.
Proof Let BRG notate the representation for Binary Reflected Gray , so

pBRG=
∑

s
∑

i |BRG(ŝi)−BRG(s)|
2` ·`

.

We prove this claim by breaking it up into two lemmas and proving them separately. The
first lemma computes the sum of differences frommutating the leftmost (most-significant)
bit in BRG. We use this result in the second lemma to compute the sum of differences from
mutating all bits in BRG.
Lemma 6

∑
s∈{0,1}`|BRG(ŝ`−1)−BRG(s)| = 22`−1.

In other words, the sum of the differences obtained by flipping the leftmost bit over all
`-bit bitstrings in BRG encoding is 22`−1.
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Proof Consider the recursive nature of BRG codes (Rowe et al., 2004). Let L` be the ordered
list of `-bit BRG codes where L`[i] is the bitstring that maps to i. Note that 2` is the length
of L` and [ ] denotes list indexing. The left half of L` contains L`−1 prefixed with 0 and the
right half of L` contains L`−1 in reverse order prefixed with 1. Flipping the leftmost bit of
L`[i] will yield L`[2`−1− i]. Thus we have

∑
s∈{0,1}`

|BRG(ŝ`−1)−BRG(s)| =
2`−1∑
i=0

|BRG(L`[2`−1− i])−BRG(L`[i])|

=

2`−1∑
i=0

|2`−1− i− i|

=

2`−1∑
i=0

|2`− (2i+1)|.

Note that for a given i∈ [0,2`−1],

|2`− (2i+1)| =

{
2`− (2i+1) i< 2`/2
(2i+1)−2` i≥ 2`/2,

which lets us split the sum to

=

2`−1−1∑
i=0

(
2`− (2i+1)

)
+

2`−1∑
i=2`−1

((2i+1)−2`)

=

2`−1−1∑
i=0

2`−
2`−1−1∑
i=0

(2i+1)+
2`−1∑
i=2`−1

(2i+1)−
2`−1∑
i=2`−1

2`

= (2`−1)(2`)−
2`−1−1∑
i=0

(2i+1)+
2`−1∑
i=2`−1

(2i+1)− (2`−1)(2`)

=

2`−1∑
i=2`−1

(2i+1)−
2`−1−1∑
i=0

(2i+1).

Splitting the left sum and using the facts that the sum of the first n odd numbers is n2,

=

2`−1∑
i=0

(2i+1)−
2`−1−1∑
i=0

(2i+1)

− (2`−1)2
= (2`)2− (2`−1)2− (2`−1)2

= 22`−2 ·22`−2

= 22`−22`−1

= 22`(1−
1
2
)

= 22`−1,
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Thus
∑

s∈{0,1}`|BRG(ŝ`−1)−BRG(s)| = 22`−1.

Lemma 7
∑

s
∑

i|BRG(ŝi)−BRG(s)| = 22`−2`.

Proof We proceed with induction on `. For the base case (` = 1), the set {0,1}
contains two BRG codes, which correspond to the integers 0 and 1, respectively. Thus∑

s∈{0,1}
∑1−1

i=0 |BRG(ŝi)−BRG(s)| = 1+1= 2= 22·1−21.
For the inductive hypothesis (I.H.), assume

∑
s
∑

i|BRG(ŝi)−BRG(s)| = 22`−2` for
some `∈N. Wemust now show that

∑
s∈{0,1}`+1

∑`
i=0|BRG(ŝi)−BRG(s)| = 22(`+1)−2(`+1).

Note that in the inductive step, we are working with strings of length `+1.

∑
s∈{0,1}`+1

∑̀
i=0

|BRG(ŝi)−BRG(s)|

=

∑
s∈{0,1}`+1

(
|BRG(ŝ`)−BRG(s)|+

`−1∑
i=0

|BRG(ŝi)−BRG(s)|

)

=

∑
s∈{0,1}`+1

`−1∑
i=0

|BRG(ŝi)−BRG(s)|+
∑

s∈{0,1}`+1

|BRG(ŝ`)−BRG(s)|.

By I.H. and the fact that there are two copies of the `-bit BRG code in the (`+1)-bit BRG
code,

= 2 · (22`−2`)+
∑

s∈{0,1}`+1

|BRG(ŝ`)−BRG(s)|.

By Lemma 6,

= 2 · (22`−2`)+22(`+1)−1

= 22`+1−2`+1+22`+1

= 2 ·22`+1−2`+1

= 22(`+1)−2(`+1).

�

Now we can prove Corollary 5 Considering pBRG :

pBRG=
∑

s
∑

i |BRG(ŝi)−BRG(s)|
2` ·`

=
22`−2`

2` ·`
Lemma 7

=
2`(2`−1)

2` ·`

=
2`−1
`

,

which is the lower bound given by Theorem 1. Therefore, BRG has optimal point
locality. �
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Note that this equivalence in point locality between SB and BRG has already been
demonstrated empirically for small values of ` (Chiam, Goh & Tan, 2006), but our proof
holds for all values of `.

Suboptimal Gray encodings
We now shift to generating a Gray encoding with suboptimal point locality, which requires
the following lemma:
Lemma 8 For `≥ 3, the `-cube Q` always contains a Hamiltonian path starting with the
sequence of nodes 0`−3000, 0`−3001, 0`−3011, 0`−3111, where the notation 0x denotes a
length- x bitstring of all 0s.

Proof Recall that the `-cube contains 2` vertices labeled as binary strings in {0,1}`, where
vertex i is connected to vertex j if and only if i and j have Hamming distance 1. We proceed
by induction on `.

For the base case (`= 3), the path 000,001,011,111,101,100,110,010 is Hamiltonian.
For the inductive step, assume that Q` has a Hamiltonian path starting with 0`−3000,
0`−3001, 0`−3011, 0`−3111. Consider Q`+1. By the inductive step, we can trace a path
starting with the sequence 0`+1, 0`−2001, 0`−2011,0`−2111 to some node 0v (v ∈ {0,1}`)
such that the first bit never flips to 1. From there, we hop to 1v , then trace out the remainder
of the path until all nodes have been visited, as nodes of the form 1x for all x ∈ {0,1}`

constitute another copy of Q`. The resulting path is Hamiltonian, since every node has
been visited exactly once.

Claim 9 There exists a Gray encoding g with suboptimal point locality pg > 2`−1
`

for any
`≥ 3.

Proof A bitstring b ∈ {0,1}` has ` neighbors that are all Hamming distance one away.
We can thus reduce the problem of constructing a Gray code to that of constructing
a Hamiltonian path on the `-cube. Recall that in Theorem 1 we mapped the problem
of minimizing locality to that of minimizing

∑
1ŝis. In the same paper, Harper (1964)

formulates an algorithm that provably generates all representations that minimize
∑
1ŝis,

which we describe in Algorithm 2:
Our goal is to construct a Hamiltonian path that violates this algorithm. This path

in turn will determine a Gray code that has suboptimal point locality, because Harper’s
algorithm generates all representations with optimal point locality.

Our modified algorithm starts by assigning 0 to vertex 0`−3000. We then assign 1 to
0`−3001 and assign 2 to 0`−3011. Algorithm 2 would force us to assign 3 to 0`−3010 if
we wanted to produce an optimal Gray code. Instead, we assign 3 to 0`−3111, which
violates the algorithm. The remainder of the path can be traversed arbitrarily such that it is
Hamiltonian, due to Lemma 8. This construction generates a Gray code g with pg > 2`−1

`
for

`≥ 3. �
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Algorithm 2:Harper’s algorithm to assign integers on the hypercube {0,1}` to min-
imize

∑
1ŝi,s, the sum of neighbor differences. The function assign(v,n) assigns the

number n to hypercube vertex v .

1 V←{0,1}`;
2 s← randomly selected node from V ;
3 assign(s,0);
4 i← 1;
5 while i≤ 2`−1 do
6 v← unassigned node in V with highest number of already assigned neighbors;

/* If there are multiple nodes with this property, choose one at

random */

7 assign(v , i);
8 i← i+1;
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010 011
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110
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111
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110
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101

010 0112

0011
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1106

0000

1113

1014

0107 0112
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A B C D E

Figure 1 A visualization of our modified algorithm from Claim 9 used to generate g . In step D, we as-
sign 3 to 111 instead of 010, violating Algorithm 2 and thus ensuring g is a suboptimal Gray code.

Full-size DOI: 10.7717/peerjcs.561/fig-1

Example Consider a 3-bit Gray code representation g , given by the permutation π =

[0,1,3,7,5,4,6,2]:

000 7→ 0

001 7→ 1

011 7→ 2

111 7→ 3

101 7→ 4

100 7→ 5

110 7→ 6

010 7→ 7.

Then g is a Gray code generated by 9, and pg ≈ 3.667 which is greater than the lower
bound 23−1

3 ≈ 2.333 from Theorem 1. A visualization of how our modified algorithm from
9 generates g appears in Fig. 1. Note that in step D, we assign 3 to 111, which has fewer
neighbors than 010 that are already labeled.

Also note that Algorithm 2 can generate both SB and BRG codes, as illustrated in Figs. 2
and 3.
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Figure 2 Algorithm 2 generating SB for ` = 3.
Full-size DOI: 10.7717/peerjcs.561/fig-2
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Figure 3 Algorithm 3 generating BRG for ` = 3.
Full-size DOI: 10.7717/peerjcs.561/fig-3

Expected point locality
Our final proof on point locality answers the question: ‘‘what is the expected point locality
of an arbitrary representation?’’
Theorem 10 (Expected Point Locality): E[pr ] = 2`+1

3 for nonredundant binary-integer
representations.
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Proof We prove this by direct computation, using a few identities, starting with the
definition of pr :

pr
def
=

∑
s
∑

i |r(ŝi)− r(s)|
`2`

H⇒E[pr ] =
1
`2`

E

[∑
s

∑
i

|r(ŝi)− r(s)|

]
. (4)

Let L= {0,...,2`−1}. Computing the expectation in Eq. (4) is equivalent to assigning
numbers in L to vertices of the `-cube uniformly at random, and then summing the
absolute differences between every adjacent pair. Let k denote the value assigned to vertex
s, and let πk denote a size ` random subset of L\{k}. Due to linearity of expectation, the
sum of absolute differences for each vertex s can be examined independently even though
they are dependent variables. Then, s has ` neighbors where the ith neighbor is assigned
the ith element in πk , which we denote πk(i). This gives us the following relation (letting
n= 2` for simplicity):

E

[∑
s

∑
i

|r(ŝi)− r(s)|

]
=E

[n−1∑
k=0

∑̀
i=1

|πk(i)−k|

]
. (5)

Since every number in L\{k} has equal probability of appearing as the ith element of πk ,
E[πk(i)] does not depend on i at all. Therefore, once we apply linearity of expectation on
the right side of Eq. (5), we can replace πk(i) with a discrete uniform random variable
sampled from L\{k}. Denote this random variable as X k . We then have:

= `

n−1∑
k=0

E[|X k
−k|]

= `

n−1∑
k=0

∑
x∈L\{k}

|x−k| ·P(X k
= x)

=
`

n−1

n−1∑
k=0

∑
x∈L\{k}

|x−k|

=
`

n−1

n−1∑
k=0

(
S1,k+S1,n−k−1

)
,

where we let Si,j =
∑j

m=im. Continuing with the fact that S1,m= m(m+1)
2 :

=
`

2(n−1)

n−1∑
k=0

((n−k−1)(n−k)+k(k+1))

=
`

2(n−1)

(n−1∑
k=0

(n−k)2−
n−1∑
k=0

(n−k)+
n−1∑
k=0

k2+
n−1∑
k=0

k

)
.
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Let Qi,j =
∑j

m=im
2. Then

=
`

2(n−1)
(
Q1,n−S1,n+Q1,n−1+S1,n−1

)
=

`

2(n−1)
(
2Q1,n−1+n2−n

)
.

Using the fact that Q1,m=
m(m+1)(2m+1)

6 and simplifying:

=
`

2(n−1)
·
2n(n−1)(n+1)

3

=
`2`(2`+1)

3
.

Substituting back into Eq. (4) yields:

E[pr ] =
1
`2`
·
`2`(2`+1)

3

=
2`+1
3

.

�

We have verified this value experimentally for 1≤ `≤ 8. It is interesting to note that
the expected asymptotic value differs from the worst-case (maximum) locality by only a
constant factor, and grows further apart with ` from the optimal locality.

Having explored the properties of point locality for single-bit mutations, we now turn
our attention to general locality and distance distortion for any variation operator.

THEORETICAL RESULTS ON GENERAL LOCALITY
General locality is a measurement of the average perturbation of a phenotype for any
arbitrary change in genotype, such as the one created by a crossover operator. Again, we
refine Rothlauf’s definition for our representation domain. As it turns out, this metric
proves to carry no useful information about representations in this domain, because the
phenotypic range grows much faster with ` than the genotypic range.

Defining general locality
Again we start with Rothlauf’s definition, called distance distortion (Eq. (2)), and develop
an equivalent definition, called general locality, that is tailored to our domain. We define
the general locality gr for a representation r as the mean difference between phenotypic
and genotypic distances between each unique pair of individuals. More formally:
Definition 2 The general locality for a representation r is

gr
def
=

1(2`
2

) ∑
(s1,s2)∈S`

|dp(s1,s2)−dg (s1,s2)|, (6)

where S` is the set of all unordered pairs from {0,1}` (so |S`| =
(2`
2

)
), dp(s1,s2) is the

phenotypic distance |r(s1)− r(s2)|, and dg (s1,s2) is the genotypic (Hamming) distance
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between s1 and s2. Note that our definition of general locality mirrors Chiam’s remoteness
preservation and is also equivalent to Rothlauf’s dc metric, since

∑np
i=0
∑np

j=i+1 is identical to∑
(s1,s2)∈S` .

We begin our analysis of general locality by proving a lower bound on its value, and
continue by proving the asymptotic equivalence of all nonredundant binary integer
representations under this metric.

Lower bound for general locality
We compute the tight lower bound on general locality for our domain since it gives an
order-of-magnitude estimate for its value, as well as a framework to compute its actual
asymptotic value.
Theorem 11 (Lower bound) gr ≥ 1

(2
`

2 )
( 16(2

`
−1)(2`)(2`+1)−`22(`−1)) for nonredundant

binary-integer representations.

Proof By definition, gr = 1

(2
`

2 )

∑
(s1,s2)∈S` |d

p(s1,s2)−dg (s1,s2)|. By the triangle inequality,

we have

gr ≥
1(2`
2

) ∑
(s1,s2)∈S`

(
dp(s1,s2)−dg (s1,s2)

)

=
1(2`
2

)
 ∑

(s1,s2)∈S`

dp(s1,s2)−
∑

(s1,s2)∈S`

dg (s1,s2)


=

1(2`
2

)(P−G),
where we let P =

∑
(s1,s2)∈S`d

p(s1,s2) and G=
∑

(s1,s2)∈S`d
g (s1,s2). Since P only deals with

phenotypes in N, it is equivalent to

P =
2`−1∑
i=0

2`−1∑
j=i+1

(
j− i

)
.

Let the outer sum fix i. The inner sum computes the sum of numbers from 1 to 2`−1− i.
This reduces P to

=

n∑
i=1

i+
n−1∑
i=1

i+···+
1∑

i=1

i.
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where we let n= 2`−1 for simplicity. Using the facts that the sum of the first m natural
numbers is 1

2m(m+1) and the sum of the first m squares is 1
6m(m+1)(2m+1), we have

=
1
2

n∑
i=1

i(i+1)

=
1
2

( n∑
i=1

i2+
n∑

i=1

i

)

=
1
2

(
1
6
n(n+1)(2n+1)+

1
2
n(n+1)

)
=

1
6
n(n+1)(n+2).

Substituting n= 2`−1 back into the equation yields:

=
1
6
(2`−1)(2`)(2`+1).

Now, since G is the sum of the Hamming distances between all unique pairs of bitstrings,
it is equivalent to

G=
1
2
2`
∑̀
i=1

i
(
`

i

)
,

because for each of the 2` bitstrings, a bitstring has
(
`
i

)
other bitstrings with Hamming

distance i (choose i of the ` bits to be flipped). We divide by two because we count each
pair twice. Simplifying G gives us

= 2`−1
∑̀
i=1

i ·
`

i

(
`−1
i−1

)

= `2`−1
∑̀
i=1

(
`−1
i−1

)
= `2`−12`−1

= `22(`−1).

Substituting P and G back into gr yields

gr ≥
1(2`
2

)(P−G)
=

1(2`
2

) (16(2`−1)(2`)(2`+1)−`22(`−1)
)
.

�
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Asymptotic value of general locality
Here, we prove that the asymptotic value of general locality in our domain is invariant of
the actual representation.
Theorem 12 gr ∼ 1

(2
`

2 )
( 16(2

`
− 1)(2`)(2`+ 1)− `22(`−1)) for any nonredundant binary-

integer representation r on ` bits. That is, as ` grows, the value of gr is independent of the
actual representation.

Proof The key intuition behind this proof is that for nonredundant binary-integer
representations, as ` grows, the phenotypic distances grow at an asymptotically greater rate
than the genotypic distances. We can separate the phenotypic distances from the genotypic
distances by partitioning S` into two sets S`= Sp`tS

g
` , where t denotes disjoint union:

Sp`={(s1,s2)∈ S`|d
p(s1,s2)> dg (s1,s2)},

Sg` ={(s1,s2)∈ S`|d
p(s1,s2)≤ dg (s1,s2)}.

In other words, Sp` contains all the pairs in S` where the two bitstrings have greater
phenotypic (Euclidean) distance than genotypic (Hamming) distance, and Sg` contains all
pairs where the two bitstrings have greater or equal genotypic distance than phenotypic
distance. We can rewrite gr as (letting C = 1/

(2`
2

)
)

gr =
1(2`
2

) ∑
(s1,s2)∈S`

|dp(s1,s2)−dg (s1,s2)|

=C(P(`)+G(`)),

where we let

P(`)=
∑

(s1,s2)∈S
p
`

(dp(s1,s2)−dg (s1,s2)), (7)

G(`)=
∑

(s1,s2)∈S
g
`

(dg (s1,s2)−dp(s1,s2)). (8)

Note that |Sg` | ≤
1
2(2`−1)2

` since each of the 2` bitstrings can have at most 2`−1 bitstrings
for which their genotypic distance is greater or equal to their phenotypic distance. This
is because for an integer i≥ `, the integers between i− ` and i+ ` can be represented
by bitstrings with genotypic distances greater than phenotypic distances j ≤ `, where we
subtract 1 due to the fact that each bitstring only has one other bitstring with Hamming
distance `. We then divide by two since we count each pair twice. Thus |Sg` | =O(`2`). We
can now say |Sp`| = |S`|−|S

g
` | ≥

(2`
2

)
−

1
2(2`−1)2

`
=

2`(2`−2`)
2 , so |Sp`| =�(2

2`). Consider

lim
`→∞

|S`|

|Sp`|
= lim
`→∞

|Sp`|+|S
g
` |

|Sp`|

= lim
`→∞

(
1+
|Sg` |

|Sp`|

)
= 1+0= 1,
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since |Sp`| =�(2
2`) grows faster than |Sg` | =O(`2`). Thus |Sp`| dominates |Sg` |, and

|S`| ∼ |S
p
`|.We can now perform a similar analysis for P(`) and P(`)+G(`). Note that

G(`)≤ |Sg` |(`−1)≤ 1
2`

22`− 1
2`2

` since any pair in Sg` can have a maximum dg −dp of

`−1. Thus G(`)=O(`22`). Also note that P(`)≥ |Sp`| ≥
2`(2`−2`)

2 since any pair in Sp` can
have a minimum dp−dg of 1. Thus P(`)=�(22`). Consider

lim
`→∞

P(`)+G(`)
P(`)

= lim
`→∞

1+
G(`)
P(`)

= 1+0= 1,

since P(`)=�(22`) grows faster than G(`)=O(`22`), and so P(`)+G(`)∼ P(`). Now
we can make a statement about gr . We have

1
C
gr = P(`)+G(`)

lim
`→∞

gr
CP(`)

= lim
`→∞

P(`)+G(`)
P(`)

lim
`→∞

gr
CP(`)

= 1.

Thus gr
C ∼ P(`). Since |Sp`| ∼ |S`| and CP(`)∼ gr , we replace S

p
` with S` in Eq. (7) to obtain

(recall C = 1/
(2`
2

)
)

gr ∼
1(2`
2

) ∑
(s1,s2)∈S`

(
dp(s1,s2)−dg (s1,s2)

)
=

1(2`
2

) (16(2`−1)(2`)(2`+1)−`22(`−1)
)
,

which was found in the proof of Theorem 11. Thus gr and 1

(2
`

2 )
( 16(2

`
−1)(2`)(2`+1)−

`22(`−1)) are asymptotically equal for any representation r .

Theorem 12 states that all representations have asymptotically equal general locality.
Since SB and BRG are well-defined for any number of bits, it follows that their general
localities are asymptotically equal as well. In fact, on just their 11-bit representations (with
only np= 2,048 possible genotypes, where a brute-force search likely outperforms many
GEAs), we calculate gSB = 677.497 and gBRG = 677.502, only a 0.0007% difference. The
implication is therefore that general locality, and by extension, the original definition of
distance distortion, are not useful as a description or prediction of any representation in
this domain. In a domain where phenotypic and genotypic distances grow with ` at similar
rates, such as with unary representation, these definitions may have more power.

EXPERIMENTAL RESULTS
As the previous section proved, Gray encoding exhibits no general or point locality
advantage over standard binary. On the other hand, several studies found a performance
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3In Rothlauf’s book, this problem is called
generalized-one-max or gen-one-max,
but is not in fact related to the linear
ONEMAX problem (Droste, Jansen &
Wegener, 2002). Nevertheless, we keep this
nomenclature to remain consistent with
the work we are comparing against.

4The book concatenates ten 5-bit genotypes
to one bitstring and sums up their
individual fitness values. To simplify the
analysis, we use a single 5-bit organism
at a time. Our code allows an exact
reproduction of Rothlauf’s result if
concatenation is selected.

advantage for Gray under various GEAs (Whitley, Rana & Heckendorn, 1997; Whitley &
Rana, 1997;Whitley, 1999;Mathias & Whitley, 1994b). As a first step towards understanding
why stronger locality does not always lead to a GEA performance advantage, this
section expands on past experimental results and analyzes the factors that lead to better
performance. Our experiments progress from the simple to the complex, to allow a
tractable analysis of the effect of point locality, as well as an evaluation of both localities
in richer and more realistic scenarios. All of our source code, representations, choices
of parameters, and Markov models can be found in the supplementary material and at
https://github.com/shastrihm/GAMO-R.

Simulated annealing
One very simple GEA is single-organism simulated annealing (SA), which we apply to the
gen-one-max problem from Sec. 5.4 of Rothlauf’s book (Rothlauf, 2006).3 We start with
SA, rather than the somewhat simpler (1+1) EA algorithm that we explore in the next
section, because we can replicate Rothlauf’s results exactly, and then expand upon them,
giving us a solid basis for comparison.

To recap Rothlauf’s experiment, it defines an `-bit genotype x that is translated to an
integer phenotype xp ∈ [0 : 2`−1] by a given representation. The fitness of the phenotype
includes a deceptive trap, and is evaluated against a target a with the function

fp(xp)= xmax−|xp−a|, (ibid. Eq. 5.2)

where xmax is defined as the maximum phenotypic value, 2`−1, and is attained only at the
global maximum a. The genotype is iteratively mutated with a random single-bit flip, and
the offspring replaces the parent if it improves its fitness, or at a probability determined by
a Boltzmann process. This probability decreases both with the fitness difference between
the parent and offspring, and with a global temperature parameter that decreases every
iteration.

As in the original study, we set `= 5, the initial temperature to 50, and the cooling factor
to 0.995, and experiment with different representations and a values. Each experiment is
run for a few thousand generations (mutations) until it converges on a solution. Finally,
we repeat each experiment concurrently and independently for thousands of different
random starting genotypes and record for each generation the percentage of experiments
(genotypes) that are at the global optimum.4

Rothlauf compared the GEA’s performance across two representations, SB and BRG,
using either a= 31 (where both representations performequally) and a= 15,where SBoften
gets trapped on the local maximum phenotype 16 and thus significantly underperforms
BRG. Our code produced the same results, as shown in Fig. 4.

In the original study, Rothlauf summarizes the worse performance of SB as follows:
‘‘The binary encoding has problems associated with the Hamming cliff and has low locality.
Due its low locality, small changes of the genotype do not always result in small changes
of the corresponding phenotype’’ (p. 136). However, as the previous section showed, BRG
has no locality advantage over SB by either metric. In particular, the locality metric that
captures the mean degree of variation across single-bit mutations, namely point locality, is
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5NGG= [0, 1, 19, 2, 31, 28, 20, 3, 23, 26,
24, 25, 22, 27, 21, 4, 13, 14, 18, 15, 30, 29,
17, 16,12, 9, 11, 10, 7, 8, 6, 5].

6UBL= [24, 1, 4, 19, 15, 16, 21, 13, 9, 26,
18, 0, 23, 12, 6, 22, 3, 28, 20, 14, 30, 7, 5,
27, 29, 10, 8, 31, 2, 17, 25, 11].
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Figure 4 Performance of four representations under simulated annealing for a 5-bit gen-one-max
problem averaged over 100,000 random seeds with (A) a= 31 and (B) a= 15. Higher results are better.
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equal for both: pSB= pBRG= 2`−1
`
= 6.2. Weak locality cannot therefore be an explanation

for performance differences in this case.
The other explanation about the Hamming cliff requires some unpacking. A Hamming

cliff, which we loosely define as a genotype whose immediate genotypic neighbors are
not also phenotypic neighbors, can represent a local phenotype maximum (Rowe &
Hidović, 2004). That is because any genotype other than the global maximum, whose
immediate genotypic neighbors (i.e., one bit-flip away) are not phenotypic neighbors,
will have nonlocal jumps in values of the fitness function. These jumps could therefore
all be farther away from the global maximum’s fitness. Such genotypes are disfavored by
the selection process to mutate, because any mutation lowers the fitness value. With a
certain combination of temperature, cooling factor, and fitness parameters, the Boltzmann
selection operator can develop a nonzero probability of getting stuck in the suboptimal
genotype, leading to underperformance of the GEA. This is exactly what happens in the
example of a= 15, where BRG has only one maximum at 15, but SB also has a suboptimal
local maximum at 16, where no single-bit mutation improves fitness. Over time, SB has
≈ 0.4 probability of getting stuck in this local optimum, leading to≈ 60% optimal solutions
over all random seeds.

Gray encoding, on the other hand, is guaranteed not to have more than one optimum,
because every non-optimal phenotype has at least one genotypic neighbor—one bit flip
away—that is also a phenotypic neighbor—one integer away—in the right direction.
Whenever such a mutation happens, it is selected by the Boltzmann process, converging
eventually to the single optimum. This property is invariant of the point locality value.
To demonstrate this, we synthesized a Gray representation based on Claim 9 and termed
it non-greedy Gray (NGG).5 By construction, for `= 5, pNGG= 8.35> pSB. Nevertheless,
NGG performs perfectly for both target values, as Fig. 4 shows.

To take this point to the extreme, we synthesized a worst-case representation using
the construction in Claim 4 and termed it upper-bound locality (UBL).6 By construction,
pUBL= 25−1= 16> pSB. And although UBL performs poorly for a= 31 and suboptimally
for a= 15, it still outperforms SB in the latter case.

The two point-locality extremes, SB and UBL, outperform each other for different
target values. Even among representations with the same locality, performance is uneven.
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We must therefore conclude again that locality does not determine performance for this
particular problem. The second explanation, the existence of Hamming cliffs, is also
insufficient to predict performance (Chakraborty & Janikow, 2003).

Gray coding is sometimes described as higher-performing than SB because it can produce
fewer local maxima for many useful problems (Whitley, Rana & Heckendorn, 1997). But
the local maxima count on its own is not a strong predictor of GEA performance for this
problem, because the probability of getting stuck in any specific maximum depends on its
fitness distance from its genotypic neighbors. For example, UBL has four Hamming cliffs
(local maxima) with a= 15, compared to SB’s two, and yet UBL still outperforms SB. In
another example with a= 29, SB has three local maxima, and yet it still converges to the
global optimum every single time.

In summary, neither locality nor local maxima count can predict performance for
the gen-one-max problem under Boltzmann selection. This holds true for many other
functions as well (Chakraborty & Janikow, 2003). A more nuanced explanation of the GEA
performance arises from two observations: that the linear fitness function penalizes local
maxima that are farther from the global maximum (in phenotypic distance), and that
the Boltzmann selection process gives preference to mutations that minimize phenotypic
distance.

The interaction between these two factors can be modeled with a simple Markov chain,
which fully predicts the probability of converging to the local maximum in the absence
of a cooling factor. Adding the cooling factor complicates the model, but it can still be
computed with a dynamic probability function. The main constraint this GEA imposes on
some representations is the inability to break free from some local maxima. In the next
section we turn to a different GEA, so that we may evaluate the effect of point locality with
different mutation and selection operators that can always jump out of a local maximum.

Evolutionary algorithms
Our next experiment introduces two changes to the previousGEA. First, we use simple elitist
selection instead of Boltzmann selection. An offspring only replaces a parent if it improves
its fitness. This change would make local maxima impassable for single-bit mutation, so we
change the mutation operator as well. Mutations can now flip any bit independently with
probabilitym, so that any genotype can be mutated to any other genotype at some positive
probability that depends on m and the Hamming distance between them. Therefore any
genotype could in principle be mutated to the global maximum in a single step. From
a locality point of view, invoking multiple bit flips per generation has the same effect as
invoking a single random bit flip for multiple generations, so a representation with strong
point locality under a single bit flip should also exhibit a smaller mean change in phenotype
value in this experiment.

This modified GEA is denoted as (1+1) EA (Droste, Jansen & Wegener, 2002), has been
studied extensively, and may be considered as a degenerate kind of simulated annealing.
Mühlenbein (1992) investigated this GEA in the context of the simpler ONEMAX problem
by developing an analytical model for the expected number of generations to reach the
optimum solution. Using a simpler fitness function that merely counts the number of ‘1’
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7Tournament selection yielded
substantively identical results.

Table 1 Mean generations to reach optimum in a 5-bit (1+1) EA gen-one-max evaluation with a mu-
tation rate of 0.2, averaged across 100,000 runs of up to 1,000 generations each. Runs that did not reach
the optimal solution were excluded from the mean. Lower results are better.

Optimum (a) SB BRG NGG UBL

31 17.5 23.8 28.3 184.8
15 103.6 21.3 23.3 124.8

bits in the genotype, his model predicts the mean number of generations to converge on the
optimumwhen themutation rate ism= 1

`
. His prediction holds for any representation since

the fitness function ignores the phenotype. Indeed, when we ran the same simulation on
various ` values larger than 5, we get similar empirical convergence times as Mühlenheim’s
experimental results, irrespective of the representation.

Reintroducing Rothlauf’s gen-one-max fitness function adds back a dependency on the
representation, as Table 1 shows.Modeling this performance with aMarkov chain confirms
the empirical results and the differences between the representations. This is an example
where SB actually outperforms both Gray encodings, at least for a= 31. In this case, note
that a mutation improves fitness if and only if it flips a bit to ‘1’. Improving mutations,
which are the only ones that can change the genotype, are independent of each other and
of any sequence, so the order of ‘0’ to ‘1’ bit flips does not matter. This leads to swift
convergence to the optimum. Conversely, in all other representations, some sequences of
fitness improvement require first flipping a specific bit one way, then later the other way.
It imposes an ordering or interdependency of mutations that prolongs convergence. It is
especially bad for UBL, because many fitness improvements require more than one bit flip
at the same time, which occurs less frequently.

When we switch to a= 15, we introduce the same handicap to SB, because now it has to
flip every single bit at once when trying to escape the phenotype 16, at a low probability of
m`. Despite the dismal performance, it is worth noting that SB still performs better under
(1+1) EA than under simulated annealing (SA): in 2,000 generations, it reaches the optimal
solution in 65.9% of the runs, compared to SA’s 60.6%, and if allowed to evolve for more
generations, all runs will eventually find the optimum.

It is also worth noting that NGG slightly underperforms BRG for both target values,
which could be a related to its weaker locality. But overall, locality is a poor explanation for
(1+1) EA performance in this experiment, because SB outperforms BRG with a= 31 and
underperforms it with a= 15, despite both representations having the exact same point
locality.

Genetic algorithms
For our last experiment, we add three more layers of complexity. First, we add a
population element with fitness-proportionate selection (roulette-wheel).7 Second, we
add a recombination operator, specifically single-point crossover. And finally, we expand
our evaluation functions to De Jong’s test suite, which can be more challenging to solve
with a GEA than gen-one-max (De Jong, 1975). These five functions take real numbers as
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Table 2 GA online performance for four representations averaged over 3,000 runs. Caruana & Schaffer (1988) results averaged over five runs in
parentheses. Lower values denote better performance.

Function Description Dimensions Total
bits

Optimum SB BRG NGG UBL

f1 Parabola 3 30 0 2.49 (1.66) 2.03 (1.43) 2.03 6.70
f2 Rosenbrock’s Saddle 2 24 0 32.56 (25.16) 22.31 (13.18) 22.35 199.48
f3 Step function 5 50 −30 −26.48 (−27.78) −25.10 (−27.16) −25.06 −17.86
f4 Quadratic with noise 30 240 0 41.46 (24.28) 32.32 (21.77) 32.28 65.83
f5 Shekel’s foxholes 2 34 ≈ 1 56.71 (30.78) 35.86 (20.68) 35.84 149.92

inputs, but De Jong and subsequent studies used fixed-point numbers as inputs, which lie
in the same binary-to-integer scope as the rest of this paper.

To compare different representations under a genetic algorithm (GA), we attempted
to replicate the experiments of Caruana & Schaffer (1988), which in turn derive their GA
parameters fromGrefenstette (1986). Wemeasured the online performance under SB, BRG,
NGG, and UBL representations, where online performance is defined as the average fitness
of all function evaluations to the current point. Their results and ours are shown in Table 2.

Unfortunately, we could not uncover the full details or source code of their
implementation, and had to construct our own experiment from scratch, likely with
different parameter or implementation choices. These differences could help explain why
our results are not identical to the original study’s. Another explanation could be that the
original study averaged each experiment over only five trials, which we found too noisy.
Instead, we averaged performance over 3,000 trials (90,000 fitness evaluations) for each
experiment to increase statistical robustness.

While our results differ in quantity, they agree in quality. Caruana and Schaffer found
BRG to perform similar to or better than SB on the minimization of all five test functions,
as have we and others (Hinterding, Gielewski & Peachey, 1995). While Caruana and Schaffer
recognize that an encoding is as likely to outperform another encoding on an arbitrary
search, they believe that ‘‘many common functions which have ordered domains have local
correlations between domain and range. A GA using Gray coding will often perform better
on this class of functions than one using binary coding because the Gray coding preserves
this structure better than binary code.’’ The authors suggest that it is the introduction of
Hamming cliffs that biases SB away from preserving the domain structure. The fact that
the weaker-locality NGG performs so closely to BRG supports this explanation.

Their paper does not clarify whether and how the crossovermechanism interacts with the
representation. For example, there is evidence that Gray encoding interferes with standard
crossover operators because it disrupts common schemata (Weicker, 2010), and that if
crossover is the only variation operator, SB can actually outperform BRG on gen-one-max
(Rothlauf, 2002).

What is clear from our experiment is that these behaviors are not captured by the
locality metrics. BRG outperforms SB despite having the same point locality, and is equal
in performance to NGG, with the weaker locality. Additionally, all four representations
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share the same values for the distance distortion, general locality, or remoteness preservation
metrics.

To summarize all three experiments, none of our results shows that strong locality leads
necessarily to better GEA performance. The next section suggests some reasons for this
counterintuitive result.

DISCUSSION
Locality and GEA performance
Why should strong locality improve GEA performance? We can list two reasons. First,
strong locality helps preserve building blocks (schemata) across variation operators, because
it supports the linkage between genotypic and phenotypic building blocks (Vose, 1991).
Second, specifically for mutation operators, strong locality enables localized, hill-climbing,
or gradient search, by effecting small changes to the genotype, such as single-bit mutation.
With strong locality, small genotypic changes lead to small phenotypic changes, and
because many practical fitness functions are locally continuous, they also lead to small
fitness changes. In Rothlauf’s words (Rothlauf, 2003):

...low-locality representations randomize the search process and make problems that
are easy for mutation-based search more difficult and difficult problems more easy.
Although low-locality representations increase the performance of local search on
difficult, deceptive problems this is not relevant for real-world problems as we assume
that most problems in the real-world are easy for mutation-based search.

Despite these reasons, we found no strong association between various locality measures
and GEA performance in our work and others’. One possible explanation is that the
common test functions we evaluated are better-suited for Gray encoding, perhaps because
of their sensitivity to Hamming cliffs (Caruana & Schaffer, 1988; Whitley, 1999). Another
explanation is that in the domain we study here, nonredundant binary-integer mappings,
our locality and distance metrics are skewed: phenotypic distances grow exponentially
with `, while genotypic (Hamming) distances grow linearly. For example, if we instead use
the redundant unary bitstring-to-integer representation, for example, then phenotypic
distances also grow linearly with genotypic distances, but the GEA would typically
underperform nonredundant representations (Rothlauf, 2006). As another example, in
the separate domain of program trees, some definitions of locality have been found to
correlate well with GEA performance (Galván-López et al., 2011).

Regardless, even if in our domain locality does not affect eventual performance, we
think it has a role in predicting GEA performance over time, especially in regards to the
mutation operator. The role of themutation operator in GEAs is to introduce genotypic and
phenotypic variation (Hinterding, Gielewski & Peachey, 1995). In other words, mutations
serve to diversify the population so that more potential solutions are evaluated. Locality, as
defined here, quantifies the average impact of single mutations, with strong locality leading
to smaller overall phenotypical variation. Whether or not strong locality improves GEA
performance depends on the effect of diversity on performance, which itself varies over
time.
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Phenotypic diversity over time
In the process of converging towards an optimal solution, GEAs combine and balance two
different search strategies, exploration and exploitation (Črepinšek, Liu & Mernik, 2013;
Weicker, 2010). In the former, high variance or diversity is desired so that many subspaces
of the fitness landscape are explored. When the GEA identifies a promising subspace, large
variations in phenotype are more likely to be disruptive rather than helpful to fitness, so
small perturbations are usually preferred (Rowe et al., 2004; Mathias & Whitley, 1994b). If
the only variance-introducing operator in a GEA is single-bit mutation, then we should
expect strong-locality representations to underperform weak-locality representations in
the early phase of the search, and outperform in the latter phase. Because of this changing
relationship over time, several studies explored dynamically changing the mutation rate
and other GEA parameters (Doerr & Doerr, 2019).

This difference matters most if our GEA is meaningfully constrained by computational
resources (Jansen, 2020). The GEA’s task then is to quickly explore the solution space for
a ‘‘good enough’’ solution, rather than an eventual convergence towards an optimum. If a
GEA is configured such that the expected fitness is relatively high after a few generations,
and before convergence, then it has a higher probability of finding a decent solution with
fewer resources, even if it is slower to converge later. This distinction is similar to the one
between online performance and offline performance of the GEA (Grefenstette, 1986).

As an example, consider a comparison of performance over time between a strongest-
possible locality representation and a weakest-possible locality representation in the the
simulated annealing experiment (‘Simulated annealing’). We picked two arbitrary target
a values for SB and UBL such that both representations have the same number of local
maxima, four. Because we are interested in the likelihood of getting a ‘‘good enough’’
solution in limited time, rather than an optimal solution, we measure the expected (mean)
fitness per generation across 100,000 runs, instead of the percentage of perfect solutions.

Figure 5 shows that for long-enough runs (starting from about 400 generations), both
representations perform about the same, with a small eventual advantage to SB. But in the
earlier generations, during the exploration phase, SB significantly underperforms UBL.
In other words, this example shows that if we must stop our simulation at an early point
before convergence, the representation with the weaker locality is more likely to produce
a solution of higher fitness. But after that threshold has been passed, the stronger-locality
representation may be more suitable for fine-grained exploitation to locate a higher-fitness
solution. On the other hand, sometimes we are specifically interested in local or hill-
climbing search (Mitchell, Holland & Forrest, 1994), in which case Gray encoding may be
preferable to SB, even with the same locality, because it always offers a genotypic neighbor
that can move the phenotype towards the maximum (Rowe et al., 2004).

When we repeat the experiment with (1+1) EA, we see the same effect, where UBL starts
out stronger but is then quickly surpassed by SB. In this case, both representations end
up with the same eventual performance. Even the GA experiments show the same locality
effect (Fig. 6), where UBL always starts out stronger than the other representations, even if
only for a very short time.
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Figure 5 Convergence speed for 5-bit gen-one-max problems with four local maxima each and either
(A) Simulated Annealing or (B) (1 + 1) EA. Fitness is averaged over 100,000 trials.

Full-size DOI: 10.7717/peerjcs.561/fig-5

Figure 6 Performance of four representations for the first 20 generations of a genetic algorithm. Each
data point averages fitness values from the best solution in that generation across 3,000 trials. Functions
shown are (A) f1; (B) f2; (C) f3; (D) f4; and (D) f5.

Full-size DOI: 10.7717/peerjcs.561/fig-6

This change in the role of mutations over time is also why some GEAs vary the mutation
rate or operator over the course of the search (Eiben & Schippers, 1998; Gómez, Dasgupta
& González, 2003; Hansen & Ostermeier, 2001; Zhao, Gao & Hu, 2007). An alternative
approach would start the search with a weak-locality representation, and switch to a
strong-locality representation as we move from the exploration phase to the exploitation
phase.

Some consider the recombination operator as the main exploration tool, with mutation
as themain exploitation tool (Caruana & Schaffer, 1988), while others disagree (Hinterding,
Gielewski & Peachey, 1995). A recent result showed that crossover andmutation outperform
any mutation-only algorithm for exploitation, at least for the hill-climbing function
OneMax (Corus & Oliveto, 2020). Steady-state GEAs, unlike the generational GEAs
considered here, allow for extremely low selective pressure independent from the mutation
rate, which lowers the sensitivity to mutation operators and enables more effective
exploration (Corus & Oliveto, 2017; Corus et al., 2021).

We think a more nuanced discussion needs to include the locality of the representation
under the chosen mutation operator. Our results suggest that strong-locality
representations are more suitable for an exploitation-oriented mutation operator, since
they limit the perturbation of the phenotype, and vice-versa.

Changing representation randomly during the GEA execution may not be a practical
tool to improve performance, because the expected number of local optima is too high
(Whitley, Rana & Heckendorn, 1997). As we have shown in ‘Expected point locality’, the
expected locality is also too high, closer to the pessimal locality than to the optimal locality,
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on average. But if our goal for the exploration phase of the GEA is to generate significant
genotypic diversity and coverage of the search subspaces, then shifting to and between
random representations may help this goal. To the best of our knowledge, no one has tried
this approach, and it remains as promising future work for analysis.

CONCLUSION AND FUTURE WORK
Various properties of GEA representations have been studied to help explain GEA
performance, such as the number of induced local optima or the existence of Hamming
cliffs. Among these properties, locality is particularly interesting to analyze, because it is
independent of the fitness landscape and can be computed precisely, which is not always
the case for other properties.

But if strong locality is also a strong factor in good GEA performance, as has been
expressed in the literature, then we do not always have the right metrics to measure it.
Our own point and global locality metrics, based on the works of Rothlauf and others,
show no clear relationship to offline GEA performance in the domain of nonredundant
binary-integer representations. It is quite likely that the result that locality does not predict
GEA performance extends to more domains. Conversely, in some other domains, such
as redundant representations or those with linear scaling of the phenotype, this negative
finding may not hold. We plan to explore locality metrics specific to redundant, nonbinary,
or noninteger representations as well. This result also does not always hold for resource-
constrained GEAs, since for short-enough executions, weak-locality representations do
appear to outperform strong-locality representations in our experiments, as they emphasize
exploration over exploitation.

Both the dm and dc locality metrics (and consequently, pr and gr ) estimate the locality of
a representation by using the sum of phenotypic distances, which grows exponentially in
our domain. Another path for future research might be to use other statistics as estimators
of locality that growmore slowly with the bitstring length, such as theminimumphenotypic
distance, maximum, or standard deviation. In addition, both Rothlauf’s locality metric and
our own equivalent point locality focus on the single-bit mutation operator. Other locality
metrics could look at different operators, and perhaps combine them with a crossover
operator to expand on distance distortion.

Of the two most common binary-integer encodings, Gray has often been shown to
outperform standard binary on many GEAs and test functions. There are various context-
dependent explanations for this advantage, such as the Hamming cliff, differing numbers
of local optima, and the properties of the typical test functions. What our study has
shown, both analytically and empirically, is that the locality of the representations cannot
reliably be one of these explanations. A complete characterization and understanding of the
performance difference between binary and Gray remains an interesting research question,
and a different locality metric may be able to shed more light.
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