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Abstract—The growing convergence of high-performance, data
analytics, and machine-learning applications is increasingly push-
ing computing systems toward heterogeneous processors and
specialized hardware accelerators. Hardware heterogeneity, in
turn, leads to finer-grained workflows. State-of-the-art server-
less computing resource managers do not currently provide
efficient scheduling of such fine-grained tasks on systems with
heterogeneous CPUs and specialized hardware accelerators (e.g.,
GPUs and FPGAs). Working with fine-grained tasks presents
an opportunity for more efficient energy use via new scheduling
models.

Our proposed scheduler enables technologies like Nvidia’s
Multi-Process Service (MPS) to pack multiple fine-grained tasks
on GPUs efficiently. Its advantages include better co-location of
jobs and better sharing of hardware resources such as GPUs that
were not previously possible on container orchestration systems.
We propose a Kubernetes-native energy-aware scheduler that
integrates with our heterogeneous framework. Combining fine-
grained resource scheduling on heterogeneous hardware and
energy-aware scheduling results in up to 17.6% improvement
in makespan, up to 20.16% reduction in energy consumption for
CPU workloads, and up to 58.15% improvement in makespan,
and up to 28.92% reduction in energy consumption for GPU
workloads.

Index Terms—Energy-awareness, Heterogeneity, Serverless,
Framework, Scheduler, Fine-granularity

I. INTRODUCTION

The widespread use of cloud services and cloud-based
technologies such as containers and microservices in the IT
industry has given rise to a new execution model known
as serverless computing, or FaaS (Function as a Service).
This model leverages container-based virtualization to allow
software developers to deploy their applications with no in-
frastructure or maintenance costs and minimal operating ex-
penses, making it an ideal solution for building and optimizing
Internet of Things (IoT) operations. A key feature of serverless
platforms is their high level of abstraction, which decomposes
applications into fine-grained functions that are deployed and
executed with no control from the developers. Unlike other
cloud services, serverless function resources are only allocated
and billed for when the function is invoked, eliminating the

cost of preallocating resources. Thus, serverless computing has
the potential to increase the efficient use of cloud resources,
reduce the consumption of power, and lower the cost of using
cloud services.

In serverless computing, the cloud provider manages and
dynamically allocates the necessary computing resources to
run the application code (or functions). The serverless model
allows developers to focus on code development and reduces
the burden of managing infrastructure. However, hardware
heterogeneity in serverless frameworks can affect their func-
tionality in several ways. Here are some of the ways in which
heterogeneity in hardware affects serverless frameworks:

• Performance: The performance of an application can
vary significantly based on the hardware it runs on.
Different hardware resources have different computing
architectures, processing speeds, memory capacities, and
storage capabilities, which can impact the application’s
performance. For example, if the application requires high
computational power, it may run slower on a serverless
platform with low-powered CPUs.

• Resource allocation: Serverless frameworks dynamically
allocate computing resources based on the demand for the
application code. However, the hardware heterogeneity
can make it difficult to allocate resources accurately. For
example, if an application requires a lot of memory,
but the serverless environment only has limited memory
available, it may result in the application being throttled
or not working correctly.

• Compatibility: Different hardware architectures require
specific libraries to run correctly. If an application or
function relies on specific software or libraries that are
incompatible with the hardware environment, it may not
run or may not get deployed at all.

• Cost: The cost of running an application or function on a
serverless platform may vary depending on its hardware.
For example, if an application requires high parallel
computational power, it maybe more expensive to run



it on a serverless platform that uses high-performance
hardware/accelerators.

To mitigate the impact of heterogeneity in hardware, server-
less platforms usually use containerization technology such as
Docker to create a consistent execution environment for appli-
cation code. Additionally, some serverless platforms may offer
multiple hardware options, allowing developers to select the
hardware that best fits their application’s requirements. But the
current containerization technologies are not mature enough
to work with various heterogeneous hardware resources. De-
velopers need to understand the implications of hardware
heterogeneity when designing and deploying applications in
a serverless environment.

The rapid development of cloud services has led to the
construction of large data centers, which face the challenge
of rising power consumption due to increasing workloads.
Data centers are estimated to account for about 2% of all
global greenhouse gas emissions and consume roughly 3% of
the world’s electrical energy supply, equivalent to the entire
airline industry [1]. This figure is expected to rise to 8% by
2030, which is alarming given the impact observed during the
Covid-19 pandemic [2]. The workloads and data processed
in data centers are continuously growing, leading to a 10-
30% annual increase in energy consumption, a trend likely to
remain unabated in the coming years [3].

It is crucial to understand these workloads and their energy
consumption patterns to design more energy-efficient work-
load schedulers. Such schedulers must be aware of hardware
performance per unit of energy and use appropriate con-
straints to schedule workloads on heterogeneous hardware.
IT equipment, which includes compute, storage, and network
resources, accounts for 50% of the power consumed in a
data center, with servers consuming 40% of the IT equip-
ment’s share [4]. Therefore, improving cloud services’ power
consumption on such infrastructures can significantly reduce
data center power consumption. This underscores the urgent
need for energy-efficient resource management in cloud data
centers.

Both heterogeneity and energy consumption can impact the
functionality and sustainability of cloud data centers running
serverless frameworks. Therefore, it is crucial to consider
these issues when designing and deploying applications in
a serverless environment. By optimizing resource allocation
and energy consumption, developers can minimize the envi-
ronmental impact of serverless computing while maximizing
its benefits. To overcome the issue of Heterogeneity and
energy-awareness with current frameworks, we present our
Heterogeneous Execution Framework with a native Kubernetes
scheduler that implements energy-aware techniques.

We make the following contributions in this paper:
• We propose a Kubernetes-native energy-aware scheduler

for systems with heterogeneous CPUs and specialized
hardware accelerators (e.g., GPUs and FPGAs).

• Our proposed framework enables technologies like
Nvidia’s Multi-Process Service (MPS) to efficiently pack
multiple fine-grained tasks on GPUs.

We organize the rest of the paper as follows. In Section II,
we provide background on heterogeneity, energy-awareness,
and serverless frameworks. In Section III, we characterize
our framework design, its components, and implementation.
We include the experimental setup and the results of the
experiments in Section IV. We discuss the outcomes of our
experiments and their effects on the application runtime in
Section V. Sections VI and VII describe future work and
related work, respectively. Lastly, we conclude our work in
Section VIII.

II. BACKGROUND

Hardware resource requirements for High-Performance
Computing, Data Analytics, and AI/ML applications are con-
tinuously changing. To improve the performance of such appli-
cations, heterogeneous hardware such as Graphics Processing
Unit (GPU), Field Programmable Gate Array (FPGA), Tensor
Processing Unit (TPU), Smart Network Interface Card (Smart-
NIC), and Quantum Processing Unit (QPU) are rapidly gaining
popularity [5]. But such hardware is not fully integrated
with today’s state-of-the-art container-orchestration systems
like Kubernetes [6] and Apache Mesos [7], or with serverless
systems like Apache OpenWhisk [8], AWS Lambda [9], and
Knative [10]. While some of these systems support specific
hardware like GPU in the case of Kubernetes and its related
serverless frameworks, they do not provide any optimizations
for such hardware. For example, in the case of Nvidia GPU,
Kubernetes can only schedule one application per GPU and,
with time-sharing configurations, provide multi-application
support. But, time-sharing is not the optimal way to share GPU
resources. Nvidia provides Multi-Process Service (MPS) [11],
and Multi-Instance GPU (MIG) [12], which are much better
at sharing GPU resources. Kubernetes does support MIG, but
MIG statically divides the GPU into up to seven equal parts at
boot time. This, in our opinion, severely limits the possibilities
for fine-grained scheduling. On the other hand, MPS provides
the ability to allocate the required number of fine-grained
GPU resources dynamically and at a finer grain, in this case,
Streaming Multiprocessors (SMs).

Serverless computing has gained immense popularity in
recent years because of its ability to abstract infrastructure
management and provide scalability to applications without
requiring complex configuration. There are several state-of-
the-art serverless frameworks available in the market that offer
unique features to developers, including:

FuncX [13], an open-source serverless framework that of-
fers a simple and easy-to-use interface for deploying serverless
functions. It supports Python functions and provides scalabil-
ity, reliability, and fault tolerance to functions. It is particularly
useful for scientific computing and data-driven workflows.

Apache Airavata [14] is another framework that supports
building and executing complex scientific workflows. It offers
a user-friendly interface for managing workflows and inte-
grates with popular scientific tools and services.

Fission [15] is another serverless framework focusing on
fast cold start times and supporting many languages. It can
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automatically scale functions up and down based on demand
and can be easily integrated with Kubernetes.

rFaaS [16], a serverless framework specifically designed for
remote function-as-a-service workloads. It provides efficient
and scalable execution of serverless functions across multiple
data centers and cloud providers.

While each serverless framework has unique features and
benefits, choosing the right framework depends on the appli-
cation’s specific use case and requirements. When selecting a
serverless framework, it is essential to consider factors such as
ease of use, scalability, fault tolerance, and cost-effectiveness.
Many open-source serverless frameworks rely on the under-
lying platform Kubernetes—also known as K8s—an open-
source system for automating containerized applications’ de-
ployment, scaling, and management. It provides various ben-
efits, such as custom accelerator support, automatic scaling,
multiple container runtimes, support for high-performance
computing, open source, and product maturity. Because of its
many advantages, we develop our energy-aware scheduler on
top of Kubernetes.

III. DESIGN

We have designed a framework to execute and manage
tasks for heterogeneous severless computing (HSC) and to
work with container-orchestration systems like Kubernetes
(Figure 1). For applications that need to run in a Kubernetes-
managed cluster, a Kubernetes control plane must be registered
with the framework. The framework then submits applications
to the Kubernetes control plane. If an application needs to
be executed on other hardware, we use a device plugin to
run that application either on a bare-metal node CPU or an
accelerator if requested. Accelerators such as FPGAs do not
have Kubernetes support; therefore, managing them via K8s
master is challenging. We build a custom accelerator runtime,
using Pylog [17], to allocate FPGA-intensive tasks to FPGA-
based nodes bypassing the K8s Master. Pylog uses Python
to program FPGAs, bridges the gap between software and
hardware abstraction.

Figure 2 shows the design of the device plugin. The device
plugin can be used for hardware connected to a bare-metal
node, such as CPU, FPGA, and GPU. Jobs that are executed
using the device plugin are received from the user by our
framework’s API server; the Job is sent to the HSC scheduler,
which can be loaded with different algorithms (FIFO, energy-
aware, etc.); the scheduler decides if the Job needs to be added
to the queue or forwarded to an agent node for execution. The
API server also sends any application data provided to a data
store accessible by the agent nodes. On each agent node, an
HSC executor daemon accepts the application, retrieves the
application data from the data store if required, and executes
the application on the appropriate device. Once completed,
the job logs are added to the data store, and an API call
is made to the API server to signal the job completion. The
cluster resource metrics are monitored by the framework using
Performance Co-Pilot (PCP) [18].

1) Kubernetes Energy Aware Scheduler: While our frame-
work can be used with the default Kubernetes scheduler, we
have also designed an energy-aware Kubernetes scheduler that
uses energy consumption as the main scheduling parameter
to optimize. The scheduler is designed with heterogeneous
hardware and different energy requirements considerations in
mind. For example, different CPUs consume different amounts
of energy and scale energy usage differently as the core usage
changes. To understand such characteristics, we have designed
an energy profiler that captures the energy statistics of a CPU
at different usage levels. We use stress-ng [19] to stress the
CPU at each core level and monitor the energy consumption
using RAPL [20] and Performance Co-Pilot [18]. The profiler
then computes the average energy requirement at each core
level and prepares a data file for the scheduler. Figure 3 shows
how two different CPUs with identical core counts consume
different amounts of energy at each core. This means that
energy is not a static resource like CPU and RAM that can
be provided during job submission. Our scheduler accepts
CPU and memory requirements from the user just like any
other system. It then converts these requirements into energy
consumption estimates based on the current node usage and
schedules it on the node that might consume the least energy.
Kubernetes does not provide a direct API to get the current
resource allocation of a node, so we compute the allocated
resources by using the pods running on the node. We do this
for all the nodes. From the profiled data of each node, we
get the energy required to run the allocated resources plus the
resources needed by the job. We then allocate the minimum
difference of energy required to run the allocated resource
and the allocated resources plus the required resources by the
job, provided energy resources are available. The maximum
amount of allocatable energy is the node’s TDP (Thermal
Design Power). The TDP value is added as an extended
resource in Kubernetes.

2) Fine-Grained GPU scheduling: Kubernetes provides
support for GPU by default, but this support is limited,
and Kubernetes can only schedule one application per GPU.
With time-sharing configurations, Kubernetes can support the
scheduling of multiple applications on the GPU, but this
mechanism is sub-optimal for resource sharing. NVIDIA
GPUs offer spatial sharing of GPU compute resources us-
ing multi-process service (MPS). Unlike time-sharing, with
MPS, the kernels from different applications can run concur-
rently. Furthermore, with MPS, users can also allocate the
GPU percentage for each application. GPU% indicates the
maximum number of GPU streaming multiprocessors (SM)
each application can use; e.g., an application getting 50%
of an A100 GPU means it can use 54 out of a total of
108 SMs. Running multiple applications together without
oversubscribing the GPU (i.e., keeping the total used GPU%
less than 100%) will effectively provide compute isolation for
each application. Therefore, it prevents interference between
concurrently running applications. Our framework supports
execution with MPS, and each MPS job is managed by the
framework. While Kubernetes manages the execution of the
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Fig. 3. Average Energy Consumption of nodes at different CPU core usage

job on the GPU, the resource management is done by our
framework.

Figure 4 shows a GPU’s energy consumption at each GPU

Fig. 4. Average GPU energy consumption at different GPU usage percentage

usage percentage level. We can see a stark difference compared
to CPU energy usage at different core levels. On the CPU
side, there is a noticeable difference in energy consumption
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Algorithm 1 Pseudo Code - Energy-aware Algorithm
1: for each node do
2: for each pod do
3: check resource consumption (CPU and memory)
4: add pod resource consumption to node resource

consumption
5: end for
6: end for
7: for each node with available compute and energy re-

sources do
8: if Compute resources are available then
9: compute energy required to run the application

(using profiled data)
10: end if
11: if compute resources are not available but energy

resources are available then
12: if 80% compute resources are available then
13: Compute the energy required using the differ-

ence of the last two cores using profiled data
14: end if
15: end if
16: end for
17: assign the job to the node with the least computed energy

requirement

when jumping from one CPU core of utilization to another.
The same cannot be said for GPUs. In GPUs, we see a
similar pattern at lower GPU utilization, but once we start
consuming more than about 45% of the GPU, the energy
consumption reaches its peak. It does not change much for
any subsequent percentage level. When designing efficient
cloud clusters, hardware utilization is an important factor, and
any organization would want to maximize the utilization. In
such cases, there are few opportunities to perform fine-grained
resource management on GPUs using energy as the main
parameter. A better alternative is to maximize the usage of the
GPU by fine-grained resource allocation, which our framework
achieves by utilizing the latest GPU technologies like MPS.
MPS is a feature of NVIDIA GPUs; similar technologies
(MxGPU) exist in AMD GPUs as well.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Our setup consists of four nodes, each with two AMD
EPYC 7443 24-Core CPUs. Two nodes have Nvidia A100X
80GB GPU, while all three nodes have a network interface
controller either integrated with the GPU or installed on a PCI
slot. For our workload, we use the PARSEC benchmark suite
[21], Mandlebrot [22], matrix multiplication kernel (MatMul),
Resnet-50 and Resnet-18 [23].

B. Results and Analysis

1) CPU tasks: Figure 5 shows the energy consumption
patterns of using the default Kubernetes and our energy-aware
scheduler. For our experiment, we launched 210 PARSEC

benchmarks, each compiled for sequential execution. Each
job requests one CPU core and 1024MB of Memory. In
the case of default Kubernetes, each job is configured with
these resources and launched directly on Kubernetes. The
total number of available cores in the cluster is 192, and one
node serves as the control plane. This means that Kubernetes
can only schedule a maximum of 192 1-core jobs on the
agent nodes. The schedulable resources are fewer than 192
since Kubernetes reserves a few pods required for cluster
management. Kubernetes can schedule 190 jobs, but about 20
jobs move into a pending status until the resources become
available again. We see the effect of scheduling these 20
jobs later in Figure 5. These 20 jobs get scheduled on the
cluster at the 320-second mark and create a spike in energy
consumption. This causes the entire experiment to take much
longer, averaging 480 seconds over five runs.

We executed the same experiment with our energy-aware
scheduler. Our scheduler is run as a pod within the Kubernetes
cluster and watches for pod-creation events. It runs alongside
the Kubernetes default scheduler and schedules the job that
needs to be scheduled with energy-aware considerations. The
framework receives the jobs from the user, and the configura-
tion file required by the scheduler is prepared and submitted
to Kubernetes. This configuration includes the flag required
by the scheduler. The scheduler watches for new pod creation
events from Kubernetes, and the job that contains the scheduler
flag is re-configured with energy requirements. At this point,
the CPU and Memory requirements for the job are removed,
and scheduling is purely done using energy requirements. This
results in more jobs being scheduled on the node than the
default method, as the jobs are not restricted by the number
of available CPU cores. The experiment shows that all the
jobs get scheduled on the nodes, and the makespan shrinks to
399 seconds. Similarly, we observe a reduction in peak power
utilization using our scheduler.

Our energy-aware scheduler does not fully guarantee the
user-requested resources; the jobs are allocated with a min-
imum guarantee of 80% resources. At the same time, the
maximum limit is set at the user-requested resources. In the
default Kubernetes experiment, we allocate the user-requested
resources. Therefore, the benefits of the energy-aware sched-
uler are not necessarily captured by this experiment, as the
difference in energy and makespan could be entirely attributed
to the changes in resource allocation. To show this is not
the case, we also execute the same experiment with default
Kubernetes but without requesting any resources. This allows
Kubernetes to schedule using its default spread algorithm,
which spreads an equal number of jobs on each node. Note
that not all nodes consume the same amount of energy. With
Kubernetes spreading an equal number of jobs on all nodes,
the node that consumes more energy is also scheduled from
the start. This, in turn, results in more energy being consumed
by the same set of applications. While, on average, the runtime
is slightly higher than when using our energy-aware scheduler,
the energy consumption peaks are also much higher.

Table I shows the average makespan and energy consump-
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Fig. 5. Energy consumption of default K8s and our energy-aware K8s scheduler

TABLE I
AVERAGE MAKESPAN AND ENERGY CONSUMPTION

Scheduler Makespan (s) Energy (Wh)
Default K8s 476 73.47

Default K8s (no resource request) 430 66.53
Energy Aware 399 60.03

tion to run 210 applications on a Kubernetes cluster. With
Default Kubernetes, we have an average makespan of 476
seconds, about 77 seconds or 17.6% longer than our energy-
aware scheduler and about 46 seconds or 10.15% longer than
scheduling without requesting any resources. We can also
quantify the effects of using energy-aware scheduling; both
energy-aware scheduler and default Kubernetes scheduler (no
resource request) do not honor the user-requested CPU or
Memory resources. This effectively shows that having the
profiled data on the energy of all systems and using these
profiles to deliberately schedule on the least power-consuming
node at the time of execution can lead to a noticeable re-
duction in power consumption without impacting makespan.
Compared to default Kubernetes (no resource request), our
energy-aware scheduler has a makespan lower by about 31
seconds or 7.47%, and lower energy consumption by about
10.3%. Unlike default Kubernetes, our energy-aware scheduler
consumes about 20.16% less energy.

TABLE II
GPU AVERAGE MAKESPAN AND ENERGY CONSUMPTION

Scheduler Makespan(s) Energy(Wh)
Default K8s 887 71.92

Default K8s(time-sharing) 364 36.93
HSC Framework 200 27.6

2) GPU tasks: Figure 6 shows the energy consumption
patterns for default Kubernetes, default Kubernetes with time-
sharing configurations, and our Heterogeneous Execution
Framework (HSC). Table II shows each scheduling method’s

makespan and energy consumption. Default Kubernetes can
only execute one application on a GPU at a time; this severely
limits the capability of a GPU. In many situations, one
application cannot utilize the GPU completely, and sharing the
available resources is logical. This is partially solved by having
time-sharing configurations in Kubernetes, where Kubernetes
allows scheduling multiple applications on the GPU. The
configurations explicitly specify the number of applications
that can concurrently run on the GPU. In our experiments,
this value was set at 10 per GPU. The configurations can be
different for each GPU. Our experiments consisted of a mix of
applications: Mandelbrot [24], matrix multiplication, Resnet-
18 [23], and Resnet-50 [25]. We executed 40 jobs, 10 of each.
In the default Kubernetes, each job consumes the entire GPU,
which results in a low GPU utilization; this also means that
at a given point during the experiment execution, the default
Kubernetes consumes the least amount of energy. But for the
entire experiment, it consumes the most at 71.92 Wh. Default
Kubernetes also takes the most time at 887 seconds. With time-
sharing configurations, default Kubernetes consumes 36.93
Wh. That is a reduction of about 64.29%. There is also
a large reduction in makespan, from 887 seconds to 364
seconds. A reduction of 83.61%. But as already established,
time-sharing is not the most optimal way to share GPU
resources. With the inclusion of technologies such as MPS in
the HSC framework, the same experiment consumes even less
energy and greatly improves the makespan. Our framework
successfully completes the same experiment in 200 seconds,
an improvement of 58.15%. When compared to the default
Kubernetes, the difference is about 126%. There are similar
improvements in energy compared to default Kubernetes with
time sharing; our framework consumes 28.92% less energy at
27.6 Wh. When compared to default Kubernetes, the difference
is 89.07%.

V. DISCUSSION

1) CPU: Effects on individual application runtime: In our
energy-aware scheduler, we do not fully honor the user-
requested resources. Instead, we allocated 80% of the re-
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Fig. 6. Energy Consumption of default k8s, default K8s with Time Sharing and our HSC Framework

Fig. 7. Average Runtime at each CPU core usages

quested resources. This results in many tasks sharing the same
CPU core. Which, in turn, results in each application taking
longer to complete. In Figure 7, we show the effects on runtime
while sharing the CPU. The experiment was conducted on
a node with two AMD EPYC 7443 24-Core CPUs and
multithreading enabled. This node has 48 physical cores and
96 multithreaded cores. We stressed the CPU with a specified
number of cores using stress-ng. Once the cores were stressed,
we executed the Blackscholes benchmark from the PARSEC
benchmark suite. This benchmark, on average, takes about 82
seconds to complete when compiled serially. We see this in our
experiment if the benchmark has full access to a CPU core. As
the physical cores of the CPU start being shared, the runtime
to complete the application also increase. The difference in
runtime is about 1.5 times.

Fig. 8. Average Runtime at each GPU utilization percentage

2) GPU: Effects on individual application runtime: We
conducted a similar experiment on GPUs. We used 1000
iterations of Resnet-50 Inference on Nvidia A100x GPU. The
experiment shows identical characteristics to that of the CPU.
GPUs can be divided into percentages, effectively dividing the
number of SMs on the GPU. We ran high-dimension matrix
multiplication to stress the GPU to the required GPU utiliza-
tion percentage and then ran our Resnet-50 application. When
there is little stress on the GPU, the runtime of the Resnet-
50 application is not affected. But, as the stress increases, the
runtime increases multifold.

The CPU and the GPU experiments show that while fine-
grained scheduling significantly improves energy and overall
makespan for a set of tasks, it comes at a cost to individual
application runtime. Our goal in this paper was to design
an energy-efficient framework that could handle fine-grained
tasks normally seen in serverless systems. These tasks are short
running, and the benefits seen in energy consumption outweigh
the increase in runtime.

3) Long running tasks: Our framework is mostly catered
to serverless tasks. Serverless tasks are usually short-running,
and most current systems have a maximum execution time;
for example, AWS Lambda has a limit of 900 seconds [26].
Orchestration systems like Kubernetes do not allow changing
the resource allocation of scheduled jobs; this is not ideal in
our situation. Our scheduler is designed to allocate energy
for tasks based on the current energy allocations per node. If
the tasks are long-running, then the energy allocation of the
job will also need to change every time there is a change in
the node’s resource consumption. While this is not an issue
for short-running tasks, for long-running tasks, the resource
allocation made at the time of scheduling would be incorrect
at a later point in time.

VI. FUTURE WORK

There are three areas of future work we will focus on: 1)
integration with a tool for application performance prediction;
2) integration with FuncX for global scheduling, beyond a
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single cluster; and 3) leveraging reinforcement learning for
improved scheduling. We discuss these opportunities in the
rest of this section.

1) Integration with Application Performance Prediction:
One of the shortcomings of this work is that we rely on users’
input on the compute resource requirement. In most systems,
it is left to the user to provide the resources required to run
their application, and often these requests are not accurate [27],
which then leads to under-utilization of cluster [28]. So for an
energy-efficient system, it is required to know the accurate
resource requirement of an incoming application to schedule
it properly. One such work is presented by Nassereldine at al.
[29]. We plan to integrate such prediction systems to enable
our scheduler to provide more accurate energy requirements
using Runtime and configuration predictions.

2) Integration with FuncX: We plan to integrate this frame-
work into FuncX [13] to allow scalable and flexible remote
task execution. Our future approach will schedule tasks across
distributed resources by selecting resources according to an
energy budget. This way we plan to develop a next-generation
energy-aware federated heterogeneous serverless computing
framework. Our future scheduling framework will be hier-
archical, using funcX to manage global scheduling policies
across distributed endpoints and integrate the energy-aware
scheduler (presented in this paper) to distribute tasks at the
local/cluster level.

3) Add Deep Reinforcement Learning algorithms: We plan
to use Deep Reinforcement Learning (DRL) based algorithm
so that it makes accurate scheduling decisions at run-time
using the feedback loop. The new algorithm will use the
current node usage and energy consumption to predict future
energy resource allocation so that future energy consumption
is minimized. It will use Deep Neural Networks to make
accurate energy consumption estimates instead of relying on
profiled/historical data.

VII. RELATED WORK

Brondolin and Santambrogio propose Power REgulator for
Service Time Optimization (PRESTO), a latency-aware power-
capping orchestrator to manage the power consumption of
cloud-native applications properly [30]. This paper defines an
Observe Decide Act (ODA) loop to manage power consump-
tion and the average latency of microservice-based workloads
by considering all the network interactions between microser-
vices in the cluster.

Townend et al. propose an architecture for an energy
management system (EMS) based on Kubernetes container
cluster to resolve the issue of traditional EMSs’ inability to
achieve high reliability and resource utilization simultaneously
[31]. Using container cluster technology, applications can be
isolated and deployed, solving the problem of low system
reliability due to interlocking failures. A dynamic Pod fault-
tolerant EMS model is proposed using discrete Markov theory.

Li et al. discuss the intricate nature of data centers and
the service models utilized in the industry [32]. The authors
propose a comprehensive scheduling system that replaces the

default scheduler in the Kubernetes container system, which
considers both software and hardware models.

James and Schien outline the development and execution
of a low-carbon scheduling policy for the open-source Ku-
bernetes container orchestrator [33]. The scheduler is utilized
in demand-side management, transferring the consumption of
electric energy to countries with the least carbon intensity of
electricity.

Ghafouri et al. introduce a deep reinforcement learning-
based method called Mobile-Kube to reduce the latency of
Kubernetes applications on mobile edge computing devices
while maintaining energy consumption at a reasonable level
[34]. The findings indicate that learning-based methods can
replace conventional heuristic algorithms, such as bin-packing,
to achieve comparable results for the targeted objective while
enhancing performance in other aspects.

Kaur et al. discuss implementing a Kubernetes-based en-
ergy and interference-driven scheduler (KEIDS) for managing
containers on edge-cloud nodes, considering carbon footprint
emission, interference, and energy consumption [35]. KEIDS
utilizes integer linear programming for task scheduling, opti-
mizing the energy utilization of edge-cloud nodes to promote
green energy utilization while ensuring optimal performance
for end-users with minimum interference from other applica-
tions.

Douhara et al. introduce a customized Kubernetes scheduler,
WAO-scheduler, which utilizes neural networks to minimize
power consumption in computational resource allocation for
the Kubernetes cluster [36]. The work also presents WAO-LB,
a solution that accounts for both power-saving and response
time necessities for edge computing.

Menouer introduces a new Kubernetes Container Schedul-
ing Strategy (KCSS) that optimizes the scheduling of con-
tainers submitted online to improve performance for both the
user and cloud provider in terms of makespan and power
consumption [37]. KCSS utilizes a multi-criteria selection
approach that considers cloud infrastructure and user needs
to select the best node for each container.

Arnaboldi and Brondolin propose HyPPO, an orchestrator
for Kubernetes and Docker environments that optimizes per-
formance and power consumption of workloads by exploiting
Dynamic Voltage and Frequency Scaling techniques [38]. It is
based on a distributed ODA control loop that enforces a power
cap while considering its impact on workload performance and
aims to exploit the opportunity gap of OLDI workloads.

Khullar and Hossain propose an algorithm, Dynamic Volt-
age and Frequency Scaling (DVFS) enabled Efficient energy
Workflow Task Scheduling (DEWTS), that uses DVFS for
energy-efficient task scheduling in green cloud operation [39].
DEWTS optimizes slack time by merging inefficient proces-
sors and computes deadlines based on the finish time of the
tasks heterogeneously while utilizing idle CPU slots without
violating any constraints.

Gunasekaran proposes and evaluates Fifer, an adaptive re-
source management framework with energy and stage aware-
ness [40]. It aims to run function chains on serverless platforms
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efficiently while ensuring high container utilization and cluster
efficiency without compromising on SLOs. Fifer utilizes a
novel combination of stage-wise slack awareness and proac-
tive container allocations that rely on an LSTM-based load
prediction model. The proposed technique can smartly scale
out and balance containers for every stage.

Jia and Zhao propose reducing energy consumption in
workloads by managing energy consumption in the startup,
runtime, and idle stages, considering the energy fungibility
phenomenon [41]. The authors introduce RAEF, a resource
allocator that proactively adjusts the functions’ resources to
minimize energy consumption while maintaining SLA guar-
antees.

Aslanpour proposes energy-aware resource scheduling al-
gorithms to place functions on edge nodes powered with
renewable energy sources, aiming to maximize the operational
availability of edge nodes while minimizing their variation
[42]. Techniques such as sticky offloading and warm schedul-
ing were proposed to reduce recurrent function replacements.

Rocha et al. present a new orchestrator, Heats, designed
to manage containerized applications on diverse clusters in a
task-specific and energy-efficient way [43]. The system is ca-
pable of balancing performance and energy requirements and it
first learns the performance and energy-related characteristics
of the physical hosts. Then, it monitors task execution on these
hosts and migrates them to different nodes in the cluster to
optimize the deployment according to customer requirements.

Dhakal et al propose GSLICE [44], spatial sharing of the
GPU to increase GPU utilization. GPU is partitioned using
NVIDIA MPS, and applications are provided with GPU re-
sources (GPU%) to meet the deadline for applications running
in the GPU. Laius also utilizes spatial GPU sharing, with
multiple applications running in GPU concurrently with pre-
defined GPU% [45]. Whenever a request to run a GPU kernel
arrives, Laius loads the kernel’s binary (PTX) file using the
application with the required GPU%. Both GSLICE and Laius
show that spatially sharing the GPU increases the overall GPU
throughput.

Most of the existing work has been around replacing the
existing Kubernetes scheduler and providing a more efficient
solution. While a part of our work in this paper also im-
plements a similar solution, we do not replace the existing
Kubernetes scheduler, and both can be run simultaneously.
Based on user requirements, our framework can schedule tasks
using either scheduler. Our solution is also unique in that it
schedules tasks based on the current energy allocation and the
estimate of how much the task would consume if launched on
a node. Our framework is also unique in that it can schedule
on various hardware types. It also provides ways to optimize
hardware like MPS with GPU and Pylog for FPGA.

VIII. CONCLUSION

Our Heterogeneous Execution Framework with our Ku-
bernetes native energy-aware scheduler provides an effective
solution for energy-aware fine-grained task scheduling. One
solution does not fit all, and we show that while fine-grained

energy-aware scheduling works for CPU tasks, the same may
not be the right solution for GPUs. So we have implemented
our framework that understands these diverse requirements and
schedules tasks through Kubernetes or directly on the bare-
metal node using our device plugin. We compare with the
current state-of-the-art Kubernetes scheduler as well as with
the default implementation of the GPUs. Our framework has
the capability to support a wide variety of hardware, unlike
current solutions which are limited to either CPU, GPU, or a
few FPGAs. With our energy-aware scheduler for Kubernetes,
the experiments show a significant reduction in makespan
by up to 17.6% and energy utilization by up to 20.16% for
CPU workloads. The GPU tasks managed by the Framework
and optimized to use spatial sharing of the GPU show a
significant improvement in makespan and energy, too, 58.15%
and 28.92%, respectively.
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