SHARP: A Distribution-Based Framework for
Reproducible Performance Evaluation

Viyom Mittal Pedro Bruel Michalis Faloutsos
Hewlett Packard Labs, USA Hewlett Packard Labs, USA University of California, Riverside
University of California, Riverside bruel @hpe.com michalis@cs.ucr.edu

viyom.mittal @hpe.com

Dejan Milojicic
Hewlett Packard Labs, USA
dejan.milojicic@hpe.com

Abstract—Performance evaluation studies often produce unre-
liable or irreproducible results because: (a) measurements have
high variability due to multiple system variables and diverse
operational conditions, (b) reported results are often focused
on point-summary statistics, such as average values. Despite
recent efforts, there does not exist a general framework to assess
and compare the performance of high-performance systems in a
principled and reproducible way.

This paper addresses this critical gap by introducing SHARP,
an open-source framework designed to redefine performance
evaluation following a reproducibility-first approach. SHARP
enables and facilitates a comprehensive characterization of the
performance distribution of an application, while orchestrating
experiments efficiently. SHARP addresses these key challenges
using (a) robust performance analysis and comparison with
Similarity Metrics; (b) the automatic determination of a reliable
sample size through a diverse set of Stopping Rules; and (c)
comprehensive recording of experimental conditions and results.

We showcase the need for and advantages of SHARP by
evaluating the performance of 20 Rodinia benchmarks on 3
HPC servers with different CPU and GPU configurations. We
empirically evaluate SHARP to expose the need for distribution-
based statistics, and demonstrate how the stopping rules of SHARP
attain reliable performance results while minimizing resource
usage up to ~90% relative to a large fixed number of experiments
sufficient enough to establish ground-truth. We see the SHARP
framework as a fundamental step towards providing customers
and engineers with a reproducible and reliable way to reason and
compare the performance of HPC applications and infrastructure.

Index Terms—Performance evaluation, Reproducibility, Bench-
marking

I. INTRODUCTION

How can we assess the performance of high-performance
Computing (HPC) systems in a reliable and reproducible
way? This pivotal question motivates our work. Performance
evaluation with HPC system is challenging due to the
inherent variability in systems and the traditional reliance
on inadequate point-summary statistics such as mean and
median, which fail to capture the full spectrum of system
performance. The broader performance evaluation goal can

'HPC systems: A composition of software and hardware configurations
designed for complex computational tasks, also including parallel, distributed,
and serverless computing.

Eitan Frachtenberg
Hewlett Packard Labs, USA
eitan.frachtenberg @hpe.com

therefore be stated as, how to estimate and compare the
efficiency and effectiveness of these systems accurately under
noisy or variable conditions. Accurate evaluation of HPC
system not only guides where we can invest our resources but
also ensures that we can trust our computing systems to drive
forward essential discoveries and developments.

Definitions: We use the following terminology in this paper.

o Performance Benchmarking: The process of measuring
and comparing the performance of hardware and software
systems. In the context of HPC, it involves running a series
of standardized tests that assess the speed, efficiency, and
reliability of the computing system.

o Workload: An application or a benchmark and an input
set that is used to test the performance of a computing
system. A benchmark, in this context, is a standardized
application designed to specifically measure and compare
the performance of computing systems.

o Performance Metrics: The quantitative measures extracted
from benchmarking experiments, such as execution time,
throughput, and latency. These metrics are vital for
evaluating the efficiency and capability of HPC systems.

o Reproducibility: The ability to obtain consistent results
using the same workload across comparable computing
environments and at different times.

Motivation: Performance evaluation is essential in assessing
the efficiency and effectiveness of new systems in both industry
and academia. However, achieving accurate and reproducible
evaluations is challenging due to various underlying assump-
tions, methodological choices and hidden sources of noise.
Studies have shown that results are often not reproducible
and lack statistical rigor, with many relying on simplistic
point summaries and no measures of dispersion. Through three
illustrative use-cases, this paper demonstrates the need for a
reproducibility-focused approach and the utility of the SHARP
tool towards this goal.

Problem definition: The overarching problem we address
here is the need to evaluate the performance of HPC systems
in a reliable and reproducible way. The input to the problem

Execution Backends
Local w MPI

- s

)

Execution|

—

Workflows I Logger et s
: System Info &
Micro-benchmarks Performance '1%31)%(

Gaussian Mixture

results

Workload translators

Confidence Interval

!Im

——
&

(a) Performance evaluation cycle with SHARP

1000 Max (1000 runs)

B SHARP Stopping Rule (KS)
Computation Saved

800

600

Number of Runs

400

200

re—— |

backprop bfs needle srad lavaMD lud heartwall sc hotspot
Benchmarks

(b) Auto-stopping with SHARP (Sec.

Fig. 1: SHARP performance evaluation cycle and results

is: (a) a system configuration with its operational parameters,
and (b) a workload. The desired output is a reproducible
estimate of the performance of the system. For simplicity,
we will focus on execution time as the primary performance
metric in this work. Clearly, one can consider alternative
or more detailed performance metrics such as peak CPU
utilization, memory bandwidth, or I/O throughput to capture
various aspects of the system’s efficiency.

Prior work: There does not seem to be a well-established
framework in the HPC community for handling the evaluation
of system performance as framed above. At a high level, we
group previous works (reviewed in into two categories: (a)
theoretical studies that provide sophisticated statistical methods
to evaluate and compare the performance, but unfortunately re-
main underutilized in practice; (b) practice-oriented efforts that
develop performance-evaluation tools, but typically use fixed
evaluation methodologies or point-summary-based statistics.
To the best of our knowledge, there remains a gap between
these theoretical and practical studies. Specifically, we are not
aware of any practical tool that deploys sophisticated statistical
methodologies for the performance of evaluation of HPC and
cloud-based systems.

Contribution: We propose SHARPEL a systematic and prac-
tical framework designed to redefine performance evaluation
through a reproducibility-first lens. As shown in Fig. [Ta]
SHARP provides methods to comprehensively characterize the
performance distribution of an application. SHARP handles
noise using statistical methods to orchestrate experiment
repetitions based on configurable or default parameters. Within
this framework, we propose ways to address:

a. How to report and compare performance distributions
to make meaningful and reproducible interpretations of the
performance data. SHARP embeds detailed descriptions of
the System Under Test, benchmark execution, source code,
and runtime parameters in the results, as well as a library of
statistical utilities to visualize and interpret the results.

2SHARP: Scalable Architecture for

Performance

Hetergogeneous Reproducible

b. When to stop an experiment to balance the reliability
of results and the computational resources. SHARP provides
several flexible stopping criteria, matching different distribution
types, which can be used for stopping the experiment dynami-
cally while ensuring reliability and reproducibility. On top of
these diverse criteria, the framework provides a meta-heuristic
to characterize the performance distribution in real-time and
apply the most appropriate stopping criterion.

As an additional contribution, we implement SHARP as an
open-source frameworkﬂ to maximize adoption and impact.
SHARP supports various distributed programming models,
including Function-as-a-Service (FaaS) without being limited
to serverless architectures.

We conduct a detailed performance study using SHARP
to showcase how it improves accuracy and reproducibility.
Specifically, we assess the performance of 20 Rodinia HPC
benchmarks over several high-performance servers with
different CPUs and GPU accelerators. Our key findings from
this study are:

a. Distributions are better artifacts for performance
evaluation than point summaries. We show that distribution-
based performance metrics are more robust and accurate
than point-summary statistics for performance comparison.
An interesting finding is that even while running the same
experiment on the same machine for five days, we found
that more than half of daily performance distributions were
dissimilar across different days. While the distribution-based
similarity metric captured this dissimilarity, the point summary-
based statistic failed to identify it in cases where the mean
value was similar but the other aspects of the distribution like
spread and number of modes varied.

b. Our distribution-based auto-stopping algorithm im-
proves both resource efficiency and reproducibility. We show
that our dynamic stopping approach manages to outperform
prior or fixed-sample approaches. For the Rodinia benchmarks,
SHARP uses 89.8% less computation when compared with a
fixed sample size large enough to attain “true” performance

3https://github.com/HewlettPackard/SHARP

distributions (Fig. [Tb). This efficiency is achieved through
SHARP’s auto-stopping technique, which adjusts the number
of runs based on the observed variability, ensuring that only
the necessary number of repetitions are performed.

In addition, the performance distribution obtained by SHARP
is closer to the “true” performance distribution, compared to
the existing approach [1]], in which the number of repetitions
(100 runs) is either more than necessary or insufficient, varying
from application to application.

Finally, we demonstrate the practicality and usage of SHARP
by answering three research questions (in Sec. §VI):

Question 1: What key insights are overlooked in
point-summary-based performance measurements for HPC
benchmarks? We aim to assess the ability of distribution-
based metrics to reveal detailed performance patterns, such
as multi-modality, which are typically overlooked by simpler
statistical summaries like mean or median. With Fig. i} we find
that 70% of the benchmarks exhibit multimodal performance
distributions: (a) 40% show two modes, (b) 20% exhibit
trimodal distributions, and (¢) 10% have more than three
modes. SHARP’s fine-grained metric collection allows user
to customize and collect desired metrics to find and debug the
cause of multiple modes as shown in Fig.

Question 2: Which GPU accelerator—Nvidia’s A100 or
H100 offers better speedup for specific applications? We
compared the H100 and A100 GPUs across various Rodinia
benchmarks and found that the H100 was consistently faster.
However, the speedup varied depending on the application,
ranging from 1.2x to 2x. These evaluations using SHARP can
assist users in making informed decisions based on application-
specific performance gains and hardware costs when selecting
the appropriate hardware.

Question 3: How does increased parallelization affect
the throughput in a request-response type of workload?
We evaluated the performance of the application by sending
2-16 parallel requests and found that while this increased the
overall runtime by 39-570%, the execution time per concurrent
unit decreased by 30-57% due to parallel processing. This
performance analysis using SHARP can help user determine
the optimal number of parallel requests the system can handle
efficiently while maintaining the required quality of service.

II. CONTEXT AND MOTIVATING EXAMPLES

Performance evaluation is used extensively in the industry
and science to assess the efficiency and efficacy of computer
systems. However, accurate and sound performance evaluation
is still a contentious topic with continuous development [2]].
Performance evaluation of computer systems is notoriously
difficult to reproduce because of the myriad assumptions,
underlying components, and methodological decisions that
can affect performance [3l], [4]. We discuss these examples
below and summarize these examples in the Table [I}

Hunold and Carpen-Amarie have shown that many existing
MPI benchmarks are neither reproducible nor statistically
sound [3]. The majority of these benchmarks just produce point
summaries with no measure of dispersion. Sound statistical

TABLE I: Key findings and limitations of cited studies

Referenced Studies Key Finding: Limitations Noted
Hunold and . MPI benchmarks lack reproducibility Reliance on simplistic
Carpen-Amarie o . .

and statistical soundness. point summaries.
(2016)
Scheuner Most Function as a Service (FaaS) Poor adherence to
(2022) studies ignore reproducibility principles. | reproducibility.
Li et al. Evaluated a crowdsourcing framework Limited statistical
(2018) with small sample sizes. measures used.
Novo Measured IoT architecture performance No uncertainty
(2018) using averages only. measures reported.
Heidari et al. Introduced Harris Hawks Optimization Lack of detailed
(2019) with variance measures. variability descriptions.
Fowers et al. Compared Al processor performance Reported only single
(2018) on FPGA implementations. summary numbers.
Firestone et al. Reported median and percentile Omitted variance details
(2018) performance for SmartNICs on Azure. in performance metrics.

analysis is necessary to determine whether an observation is
repeatable or the result of chance, which is the problem that
SHARP attempts to solve. These analyses, however, are not
performed universally. Another example of a literature survey
reports, after reviewing 112 function-as-a-service (FaaS) perfor-
mance studies, that most studies do not follow reproducibility
principles on cloud experimentation [6].

To motivate the broad need for a framework like SHARP, we
briefly review five arbitrarily selected examples of performance
evaluation from different venues and in diverse domains.
These examples showcase the pervasiveness and usefulness of
performance evaluation on the one hand, as well as its typical
summarized reporting on the other hand.

Starting with software examples, Li et al. evaluated a new
framework for crowdsourcing by measuring various execution
times for 20 sets of image tagging tasks [7]. All 20 times are
shown in a scatter plot and their average is reported in the text.
This type of performance evaluation, using a small fixed sample
size and one or two point summaries is quite commonplace. In
a similar example, Novo measured the performance of a new
architecture for scalable access management in IoT [8]]. The
evaluation depicts graphically a single throughput number per
concurrency level, representing the average of 5 measurements,
again with no uncertainty measures.

Sometimes, the reported performance does add a measure
of variability or uncertainty, as is the case for the article
introducing Harris Hawks Optimization (HHO) [9]. Although
the main tables comparing the performance of HHO to other
heuristics do not mention the sample size or even the units of
measurement (these are listed in the text), they do include a
variance measure for each sample set (standard deviation), but
no other description of variability.

On the hardware side, we have two studies that measure the
properties of actual hardware. Fowers et al. presented a new
processor for real-time Al [10]. The performance evaluation
section compared the latency, throughput, and utilization of
Al microbenchmarks on three FPGA-based implementations.
Only a single number is reported per metric, and it is unclear
how it is summarized and from which sample size. A different
approach is taken by Firestone et al. when evaluating the
performance of custom SmartNICs on the Azure cloud, also
using FPGAs [11]. For latency, this paper reports median
performance (p50), as well as p99 and p99.9 in 1 million short
messages with unspecified variance. Averages are also reported

when comparing latency to other solutions, as well as for other
metrics, like throughput and end-to-end read time.

All of these examples have three things in common: they
are all well-regarded, with hundreds or thousands of citations;
they are all fairly recent, so distribution reporting had not been
a novel concept at the time; and none of them fully treats
performance as a distribution, instead relying on rudimentary
dispersion statistics, if that. There is no notion of modality,
analysis of long-tail behavior, depiction of uncertainty, or
modeling of variability—all of which are paramount for
accurate, reproducible, and actionable performance evaluation.

III. SHARP: METHODOLOGY

In this section, we discuss strategies for achieving consistent
and reliable performance evaluations in high-performance
computing systems. Our approach to reproducibility is compre-
hensive; it ensures the process is robust, the results are reliable,
and the interpretations are clear. We achieve this by integrating
established theoretical principles with innovative, practical
methods. This section is organized into two subsections:
Reproducibility, where we outline our methods for ensuring de-
pendable results, and Methodological Innovations in SHARP,
where we introduce new techniques that enhance SHARP’s
benchmarking capabilities in cloud and HPC environments.

A. Reproducibility

SHARP’s raison d’étre is to facilitate reproducible perfor-
mance evaluation, so let us define “reproducible” more precisely.
One study, for example, defines it as minimizing run-to-run vari-
ation in execution performance [12]]. While reducing variability
is crucial, this definition might be too narrow given the inherent
variability in modern systems. Another study suggests that
reproducibility in cloud performance measurements requires
extensive repetitions and proper statistical treatment [13]. We
align with the need for robust statistical approaches but argue
against any fixed sample size, which may be insufficient or
excessive depending on the context.

Following Peng, reproducibility involves several criteria,
including the availability of data, code, documentation, and stan-
dardized releases [14]. SHARP adheres to these criteria through
open-source practices, containerization, and detailed record-
keeping of all experiments. However, these criteria alone do
not suffice if performance is considered a static, singular figure.

Expanding on the concept, one study distinguishes three
facets of reproducibility: process, results, and interpreta-
tion [15]. SHARP addresses these as follows:

o Process: Ensuring that experimental setups are well-
documented and can be independently replicated, sur-
passing the basic requirements set by [14].

« Results: Moving beyond mean or median performance
metrics, SHARP utilizes distribution-based measures,
which are more indicative of actual system performance
under varied conditions.

o Interpretation: By generating more comprehensive re-
ports that include visualizations of data distributions and

multiple statistical analyses, SHARP supports consistent
interpretations of experimental results.

B. Methodological Innovations in SHARP

SHARP introduces several methodological innovations to
address the challenges of performance variability and repro-
ducibility in high-performance computing (HPC) systems:

« Distribution-based Analysis: Unlike traditional ap-
proaches that focus on point summaries such as the mean
or median, SHARP emphasizes the importance of ana-
lyzing complete performance distributions. This approach
allows for a more detailed understanding of system behav-
ior under various conditions, as recommended by [16].

o Dynamic Sampling: SHARP implements adaptive
sampling techniques to determine the optimal number
of experiments based on the stability and variability of
performance data. This method dynamically adjusts the
sample size during the experiment, ensuring efficient use
of resources while maintaining statistical rigor.

« Comprehensive Recording and Reporting: Every
experimental setup, run, and result is meticulously
recorded and reported in SHARP. This includes detailed
metadata on the system configuration and experimental
conditions, ensuring that studies are fully reproducible and
transparent. This human-readable metadata in turn can be
used as input to SHARP to recreate a previous experiment.

« Non-intrusive orchestration: Unlike performance
analysis tools (e.g., perf) that execute alongside the
experiment, SHARP primarily orchestrates the execution
of experiments and obtains metrics from the output of
the experiments themselves. As a result, SHARP does not
interfere with execution and introduces no overhead.

IV. SHARP: ARCHITECTURE AND IMPLEMENTATION

To meet the goals just outlined, SHARP stands on three design
pillars: (1) distributions must be captured accurately; (2) distri-
butions must be recorded completely; and (3) distributions must
be analyzed and clearly reported with statistical rigor. SHARP
itself is therefore not a benchmark, but a framework that runs
benchmarks to produce reproducible performance. The frame-
work is flexible enough to handle workflows and workloads on
diverse platforms, including local and remote servers, HPC and
MPI clusters, serverless (FaaS) environments, and containers.

SHARP runs two classes of executable units (called
“functions” in the serverless parlance): Python microbenchmarks
suitable for FaaS and black-box programs (user-provided
binaries). Microbenchmarks focus on individual aspects of
the system’s performance (e.g., /O or MPI synchronization)
while programs represent complete benchmarks that focus
on application performance (e.g., Linpack). SHARP includes
eleven microbenchmark functions, all stateless and atomic,
as well as wrapper FaaS functions to run a few open-
source benchmarks, such as the Rodinia HPC suite and the
GROMACS molecular dynamics benchmarks.

SHARP’s architecture, shown in Fig. consists of the
following modular Python components:

Stopping
‘ Micro- WIS

benchmarks I

‘Benchmarks — Workflows —>_Launcher —> Logger

. y
Workflow I
Execution backends:

translator
local, SSH, MPI, docker,
/. Knative and Fission |

Fig. 2: The SHARP architecture

a) Launcher: The load generator—or launcher—is
SHARP’s centerpiece. It executes individual functions or
programs as prescribed by the workload whilst coordinating
the execution backend, the stopping criteria, and the logging.
Launcher can be configured for new backends either by
deriving from its base class, or in most cases, simply by
adding a JSON or YAML configuration file with the required
command line invocation. Currently implemented backends
include local processes, pre-built docker containers with the
benchmark’s environment, remote processes (via MPI or SSH),
or FaaS invocation (via shell commands or REST APIs that
can leverage existing web load generators). The behavior of
the launcher is typically controlled via the command line and
is highly customizable. Controls include stopping criteria, cold-
and warm-start invocations, timeouts, logging and metadata
parameters, concurrency, and specific backend options. A
particularly useful control is the set of performance metrics to
collect, also defined via a simple JSON or YAML interface.
This runtime mechanism allows the launcher to collect arbitrary
metrics such as latency or power consumption from any
function with no code changes.

b) Workflows: Modern workflows often combine different
applications or application stages, sometimes with complex
dependency relationships. To execute these workflows with their
dependency graphs, SHARP uses the time-tested ‘make’ tool.
However, many other workflow formats exist with similar graph
information and better syntax. SHARP includes a standalone
program to translate workflows from a subset of the popular
CNCF’s standard Serverless Workflow Specification (in JSON
or YAML format) to a valid Makefile (invoking Launcher),
which can then be run using ‘make’.

’—> Reporter

Logs Reports

c) Stopping rules: One of the key challenges in bench-
marking is deciding on the appropriate number of samples (re-
peated measurements) to collect. Choose too few, and the mea-
surements would be unreliable; choose too many, and precious
compute resources would be wasted. SHARP includes eight dy-
namic stopping rules tailored for specific types of distributions,
as well as a novel meta-heuristic to identify the most appropriate
stopping rule for the dynamically observed distribution, and
another generic rule based on the distribution’s self-similarity.

The last two rules require no prior knowledge of the distri-
bution to derive a statistically justifiable sample size. The meta-
heuristic requires, however, numerous tunable parameters to
classify the appropriate distribution. We tuned these parameters
based on a set of 10 synthetic distributions that capture
different distributions we observe in real experiments—normal,
log-normal, uniform, log-uniform, logistic, bi-modal, multi-

modal and autocorrelated sinusoidal distributions—and some
distributions that would not really be observed—Cauchy and
constant distributions—but that can help test the accuracy of
the detection and stopping heuristics. Tuning the detection and
stopping heuristics on these distributions is straightforward
since most of them have closed-form expressions, and we use
large sample sizes (1000 samples) for the ones that do not.

d) Logger: A separate module automates the chore of
logging the complete configuration, performance and run data.
All metrics and factors are logged in a “tidy data” CSV file
to facilitate statistical processing. Logger understands and
supports concurrency and parallelism (such as MPI’s number
of processes or a CPU-based multiprogramming invocation)
and records each concurrent instance in its own row. An
accompanying markdown description file is automatically
written alongside the raw data, describing each field in detail,
as well as the metadata required to recreate the System Under
Test. Such data includes the description of the hardware, OS,
libraries, and software, and even the current git hash of SHARP’s
own code. This metadata file is both human-readable and
machine-readable: SHARP itself can parse it to recreate the
same parameters for a reproduction run.

SHARP provides a choice of parameters and metrics to collect
and record. The list currently includes the execution time, OS,
Memory, CPU and GPU configurations of the system. Adding
more metrics and parameters to this list is as simple as adding
a YAML file that defines how to collect new metrics or factors
from the command line, e.g., using ‘/usr/bin/time -v’
to collect the maximum resident size of the program or Linux’s
‘perf’ tool to collect hardware counters.

e) Reporter: The final stage of the benchmark is the
statistical processing of the raw data and the human-friendly
presentation of results. The independent Reporter module
combines RMarkdown [[17] scripts with a collection of common
statistical utilities for the analysis and reporting of distributions.
Executing these scripts on the CSV files that resulted from the
workflow execution computes the desired performance metrics,
as well as a suite of statistics to quantify uncertainty: means,
medians, standard deviations, p-values, confidence intervals,
distribution comparisons and visualizations hypothesis testing,
and distribution comparisons. The metrics are graphed and
uncertainty measures across repetitive function copies are
depicted as either confidence/high-density intervals or distri-
bution descriptions. Any change in the underlying platform,
software, and hardware can be evaluated by simply rerunning
the workflow and reporting.

The resulting reports can be exported to PDF, DOCX, LaTeX,
HTML, or PPTX formats. The execution of the markdown
files is delegated to a Docker container that freezes all of the
statistical and graphing software prerequisites to facilitate the
reproduction of the reports. The resulting report includes all
of the graphics, statistics, and descriptive narratives.

Graphical user interface On top of these five components
and in interaction with all of them, SHARP provides a web-
based graphical user interface (GUI). The GUI represents
an alternative to running the launcher and reporter from the

https://serverlessworkflow.github.io/

command line and inspecting the resulting report files, and
is particularly suitable for the rapid experimentation stage
of the iterative performance-evaluation lifecycle. The GUI
currently supports most of SHARP’s features, and is planned
to also graphically assist the following activities in the future:
experiment design, performance prediction, optimization, and
automated regression testing. A screenshot of one of the GUI's
pages is shown in Fig.

Density
ECDF

Fig. 3: SHARP GUI screenshot of comparison interface

V. EMPIRICAL EVALUATION
A. Experimental setup

Here, we describe the benchmarks, hardware configurations,
and metrics used to evaluate SHARP.

1) Benchmarks: We used 20 diverse benchmarks from the
Rodinia HPC suite [18]]. Each of the eleven CPU-based and
nine GPU-based benchmarks (Table [[I) were executed 5000
times on three HPC servers, spread across five days with 1000
runs each day.

TABLE II: Benchmark classification and configuration

Benchmark Parameters

backprop 6553600

backprop-CUDA 955360

bfs graphIMW_6.txt

bfs-CUDA graphIMW_6.txt

heartwall test.avi, 20, 4

heartwall-CUDA test.avi, 100

hotspot 1024, 1024, 2, 4, temp_1024, power_1024
hotspot-CUDA 1024, 2, 4, temp_512, power_512
leukocyte 5, 4, testfile.avi

srad 1000, 0.5, 502, 458, 4

srad-CUDA 100000, 0.5, 502, 45

needle 20480, 10, 2

needle-CUDA 20480, 10, 2

kmeans 4, kdd_cup

lavaMD 4, 10

lavaMD-CUDA 100

Tud 8000

lud-CUDA 1024

sc 10, 20, 256, 65536, 65536, 1000, none, 4
sc-CUDA 10, 20, 256, 65536, 65536, 1000, none, 1

2) Testbed Setup: We used three HPC servers (Table
to run these experiments. Docker containers were consistently
used to ensure uniform libraries across different experiment
runs, and precautions were taken to ensure no interfering user
processes were running on the system. For each benchmark,
execution time was recorded as the performance metric. We
cross-checked the performance of the runs within docker and

with containers, finding that the container execution overhead
was less than 5%.
TABLE III: Hardware configurations

Servers CPU (cores) RAM GPU
| Machine 1 | AMD EPYC 7443 256GB | Nvidia A100X 80GB
Machine 2 (48 cores)
Machine 3 | [MCIR) XeonR) 868V) o | Nvidia H100 80GB
Platinum (96 cores)

We present the histograms of run times of the 5000
executions on Machine 1 in Fig. @] including boxplots to
highlight median and outliers. We choose the histogram bin
size as the minimum bin width between the Sturges method
and the Freedman-Diaconis rule.

3) Similarity Metrics: To evaluate whether one distribution
reproduces another, we employ two statistical metrics to
compare multiple runs of identical benchmarks: Normalized
Absolute Mean Difference (NAMD): provides a relative
measure of the average variance between the two sets of data,
normalized by their mean values.

1 1 n 1 n
5 XZ;I i |+Y;\ i —Yil

Here, X; and Y] represent the individual observations in the
two sets of experiments, ¢ is the index of summation, n is the
total number of observations in each set, X and Y are the
mean values of the sets X and Y respectively.

Implicit Assumption: NAMD assumes that the datasets have
the same number of observations and are scale-independent. It
is sensitive to the mean of the datasets and does not account
for distributional characteristics.

Kolmogorov-Smirnov (KS) Statistic: The KS statistic as-
sesses the distributional similarity of two sets of measurements,
with a smaller XS value indicating greater similarity [16].

KS =sup|Fi(z) — Fa(z)]

The KS statistic measures the supremum (the least upper
bound) of the absolute differences between the cumulative
distribution functions F(z) and Fy(x) of two datasets.

Implicit Assumption: KS assumes that the two datasets are
approximately independent and identically distributed. This
method is non-parametric and does not assume any specific
distributional form, making it broadly applicable.

In summary, while NAMD focuses on point summary
differences (mean values), the KS statistic considers the entire
distribution of performance metrics.

B. Evaluating similarity: point-summary vs distribution based

Aim: The goal of this experiment is to compare the
effectiveness of the point-summary metric for performance data
against the distribution-based metric, namely NAMD vs. KS.

Experiment: We computed both metrics across 5 days on
the 3 machines for the 11 CPU-based benchmarks. For each
benchmark-machine, there were 5 performance distributions
for each day, which we compare pairwise, resulting in 10

backprop bfs heartwall hotspot kmeans
500/ 2000
2501 /m/“m 200 | ih 300 1000
/|
0 ’ ° 0 0
| - | —COOD O O o ° Co— - o ® @ — 00 o ama- 0O
m |] |] | | m—
2 3 4 5 6 1 2 3 4 5 6 7 0.75 1.00 1.25 1.50 3 4 5
lavaMD leukocyte lud needle SC
400
2001 200
‘(‘\\ 200
I\
. A ol 0
2 —— | ‘ ! TR TN P— ‘ I—— - ‘ ‘
35 0.8 1.0 1.2 1.4 3 4 5 6 1.25 1.50 1.75 2.00
8 400 srad backprop CUDA bfs CUDA heartwall CUDA hotspot CUDA
y 1000 N
1000
; 500
* ’ i ¥ M
iiM il ie] i 0 0 0
—]] e] — e e
15 2.0 075 1.00 125 150 2 3 1.0 15 2.0 1.00 125 150 175 2.00
lavaMD CUDA lud CUDA needle CUDA sc CUDA srad CUDA
1000 500 i
5001
500 250
0 0L 0
- — I e —] [,
10 15 20 1.5 2.0 2.5 4 5 6 7 6.0 6.5 7.0

Runtime (s)

Fig. 4: Distributions and boxplots for 5000 runs on Machine 1

comparisons per benchmark machine and 330 comparisons in
total. We utilized a heatmap representation to visually compare
the performance similarity metrics across the five day-long runs
for each benchmark. Fig. [5b] presents one of these heatmaps
for the Hotspot Rodinia benchmark as an example of the
differences between the metrics. We also compare all NAMD
and KS statistics in the scatter plot in Fig. [5a]

Result: We observe that many points exhibit high KS
distance but low NAMD values, which indicates cases where
the mean values of the distributions are similar, but other
aspects, like distribution spread or number of modes, differ
significantly. These important differences can be overlooked by
NAMD. Therefore, the KS statistic is preferable for comparing
two distributions as it captures more than just the average values.
We highlight one case between the 3" and 5" day runs of
the Hotspot Rodinia benchmark on Machine 2 in Fig [5b} The
NAMD value was zero, suggesting a high similarity, while the
higher KS value (0.21) suggests a more significant difference
in distributions. Fig. [5c| shows that the distributions of the two
runs are quite different indeed, despite the similarity in their
means. While the 37¢ day run has three modes of execution
time, there are only two modes in the 5th day run, a distinction
that is often missed when using point-summary comparisons.
Takeaway 1. Point-summary metrics fail to compare effectively
for distribution features such as modes and tail, and are
therefore inferior to distribution-based similarity metrics.

C. Evaluating stopping criteria: summaries vs. distributions

Aim: This experiment aims to evaluate the efficacy of
different stopping criteria in benchmark experiments for hetero-
geneous environments with different hardware. These criteria

help in stopping the experiment automatically at a point when
the sample size is just large enough to estimate performance
robustly, thereby saving resources. Here, we compare the
traditional fixed-number-based stopping criterion—as used in
the SeBS framework [1]] and the studies in Sec. §ll}—against
dynamic stopping rules based on confidence interval (CI) and
Kolmogorov-Smirnov (KS).

Dataset: We gathered the performance distributions of the
GPU-based Rodinia benchmarks on the Knative serverless
environment with Machine 1 and 3 as worker nodes. During
each run, we sent two parallel requests to Knative which
were divided and executed on A100 (Machine 1) and H100
(Machine 3). From our previous comparisons for NAMD and
KS statistics, we found that an upper limit of 1000 runs is
adequate to reproduce the performance distributions.

Experiment: We reran the benchmarks with Knative on
Machine 1 and 3 with these three stopping rules:

« Fixed: The fixed stopping rule stops the experiment after

a fixed number of 100 runs, as recommended in the SeBS
framework [1]].

« Confidence Interval: The CI heuristic stops when the
95% right-tailed confidence interval of all run-time mea-
surements is smaller than a threshold proportion of mean
(we used two CI thresholds, shown in Table .

« Kolmogorov-Smirnov: The KS-based stopping rule
calculates the KS between the 1°¢ and 2"¢ half of the
runs and stops when it drops below the given threshold.

In Fig. [6] we show the amount of computation performed
(or conversely, saved) when using different stopping rules. The
second and third panels show the NAMD and KS differences
of the partial samples to the complete 1000-run dataset.

o
w
0

Similarity Metrics Comparison

[e v
= NN W
o u o

o
=
o

o
o
o]

k3

] c”c‘f - o -| . %
0.0 0.2 0.4 0.6 0.8 1.0
KS Statistic

Normalized Absolute Mean Difference

(a) NAMD and KS statistic comparison

Dayl Day2 Day3 Day4 Day5 Dayl Day2 Day3 Day4 Day5

Day 1 0.02 0.05 0.05 [UOLRN Day 1 0.09 0.16 0.20 0.23

Day2 0.09 ﬂ 016 012 015
Day3. 016 016 ﬂ : .
Day4ﬂ 0.12 I
DayS 0.15 0.17 M

KS Statistic

NAMD

(b) Heatmaps of NAMD and KS statistic

Day 3 Day 5
500 T 400
E25°‘ 200
=}
3 o o
08 1.0 12 14 0.75 1.00 125 150
Runtime (s)

(c) Distribution of 3" and 5** day runs
Fig. 5: Heatmaps and distributions for hotspot on Machine 2

TABLE IV: Thresholds for stopping rules
Stopping Rule Stopping Condition | Threshold
Fixed 100 runs None
Confidence Interval cI<T 71 =005

T, =0.01
Kolmogorov-Smirnov Rule KS<T T=0.1

From this experiment, we can conclude the following:

o The fixed stopping rule, while straightforward, does not
adapt to the variance seen in performance distributions,
either stopping too early or too late (for the full 1000).

o Cl-based stopping rules, particularly using the tighter
threshold T2, tend to continue the experiment longer than
necessary to achieve a minute improvement in precision.

o The KS-based stopping rule exhibits a balanced approach,
significantly reducing the number of runs while maintain-
ing result reproducibility (up to 89.8% less compared to
the default 1000, hence the savings reported in Fig. [Tb).
The implication is that the KS rule is effective in
identifying when additional runs cease to provide new
information about the performance distribution.

Takeaway 2. KS-based stopping rule reduced the computation
by 89.8% for this suite while maintaining a low KS divergence
value of 0.104 when compared with the ground truth.

1000

Stopping Rules
800 s 100
mm CIT1
600 mm ClIT2
mm KS
400
200 I I I
RN AT e

210

<

ol 0 Tl O ot e e B ML
- l I I- I- |

Runs

KS Statistic
5
N}

Enlim _H.n BE_N si_m _Sem BB . lIl- hemn b
backprop bfs heartwall hotspot lavaMD lud needle sc srad

Fig. 6: Comparison of stopping rules on Machine 3
VI. USE CASES FOR SHARP

We next discuss additional use cases for the distribution-
focused approach using SHARP.

o
15

A. Use case 1: Fine-Grained Application Analysis

We demonstrate SHARP’s capability to collect and summarize
fine-grained performance for detailed application analysis
by analyzing the leukocyte tracking application. The user-
configurable metrics are captured concurrently and include:

o Execution Time: Overall time taken to run the entire
leukocyte tracking application, involving both the detec-
tion and tracking phases (explained next).

o Detection Time: Time spent in the detection phase, which
includes the Gradient Inverse Coefficient of Variation
(GICOV) computation to enhance edge detection and the
subsequent dilation to smooth the edges.

o Tracking Time: Time spent in the tracking phase, which
involves computing the Morphological Gradient Vector
Flow (MGVF) and the evolution of the snake algorithm
(active contour model) to fit the edges of the leukocytes.

Insights for the user: From the distributions in Fig. [7] we
see that the dual modes in the overall execution time were
introduced in the tracking phase. This insight provides users
with the knowledge of the cause of the introduction of two
modes so that they can focus on optimizing the tracking phase.
Overall, users can customize SHARP to log desired metrics
from the application for fine-grained performance analysis.

B. Use case 2: Comparing GPU accelerators

We compare the performance distributions for Rodinia
CUDA-based benchmarks on Machine 1 with A100 and
Machine 3 with H100 GPUs. The H100’s distributions exhibit
up to 2x faster performance and with more modes than A100
distributions, which may imply diverse performance states
within a single benchmark.

Insights for the user: These characteristics inform users
about expected performance differences. For example, in the
bfs CUDA benchmark (shown in Fig. |§|), the H100 shows a
potential speedup of up to 2x compared to the A100 with
higher modes to the left indicating faster performance in most

200

(a) Distribution of Execution Time

100 100 M
0 o /mrkﬁmﬁh.‘

0.35 0.40 045 0.50 2.5 3.0 3.5

(b) Distribution of Detection Time (c) Distribution of Tracking Time

Fig. 7: Performance breakdown for fine-grained analysis of the
leukocyte tracking application

cases. For srad (shown in Fig. [9), the H100 provides a more
modest speedup of ~ 1.2x. These evaluations can be performed
with ease using SHARP and help users make informed decisions
based on the hardware cost and the specific performance gains
which may vary significantly for different workloads.

bfs CUDA bfs CUDA
1000
500 500 ‘
Q| 0
|- [| . -
2 3 0.9 1.0 1.1 1.2
(a) A100 (b) H100

Fig. 8: bfs performance comparison for A100 and H100

srad CUDA srad CUDA
500 1
500
*__llimll]
0 0
1 (1] 3 [—
6.0 6.5 7.0 52 5.4 56
(a) A100 (b) H100

Fig. 9: srad performance comparison for A100 and H100

C. Use case 3: Evaluating the effect of parallelism

We study the impact of concurrency or parallelism on the
Stream cluster (sc) task on Machine 3. We ran the workload
with increasing levels of concurrency and recorded the average
execution time across the runs. The results are summarized in
Table [V| We also report execution time per concurrency unit,
which is the average execution time divided by the concurrency

TABLE V: Effect of concurrency on application sc

Avg. execution time Execution time per

CrETe s (seconds) Concurrency Unit (seconds)
1 3.46 3.46
2 4.80 2.40
4 6.87 1.72
8 11.90 1.49
16 23.14 145

level. This metric helps in understanding how well the system
handles increasing levels of parallel tasks.

Insights for the user: As the level of concurrency increases,
the average execution time increases. The execution time
per concurrency unit decreases, indicating that the system
scales well with increased concurrency. Users can leverage
concurrency to handle larger task loads more efficiently.
SHARP helps users make informed choices for concurrency to
efficiently provision system resources within a given quality-
of-service envelope.

VII. RELATED WORK

As mentioned in Sec. §Ill methodological pitfalls still affect
much of the performance evaluation practice, even in peer-
reviewed scholarly publications. There is an extensive body of
work on this topic, and we can only survey a few particularly
relevant studies in the scope of this paper. These studies
range the gamut from the theoretical (describing principles
for reproducible performance evaluation, improving accuracy,
or addressing statistical pitfalls) to the practical (predicting
or reducing performance variability and describing tools and
implementations to achieve all of the evaluation’s goals). We
briefly survey some of these works in the same order of ideas.

A recent paper by Papadopoulos et al. lays out eight princi-
ples for reproducible cloud-performance evaluation, including
experiment repetition with adequate confidence measures,
a full description of the experimental setup and metadata,
probabilistic result description, and statistical evaluation of
significance [2]]. These principles are adhered to closely in the
SHARP benchmarking framework. Similarly, SHARP follows
many of the practices for reproducible performance evaluation
in parallel computers proposed by Hoefler and Belli [19].
This paper covers common pitfalls of experimental design,
experimental data analysis, comparing statistics, measurement,
and reporting. Examples include neglecting confidence intervals,
assuming collected data is normally distributed, handling out-
liers incorrectly, comparing central-tendency point summaries
in complex distributions, and incomplete setup documentation
and measurement reporting.

To compare the performance of two systems, Hunold et
al. suggest looking at distributions of averages (mean or
median) of repeated experiments using hypothesis testing (t-
test or Wilcoxon, respectively) [5]. However, these methods
may still produce misleading results, as shown in Sec. §V]
Alternatively, De Olivera et al. suggests that when comparing
two performance distributions and the effect of a variable,
quantile regression is more reliable than ANOVA [20]]. SHARP

takes a step further and compares the similarity of the complete
distributions themselves. It also fully records them in CSV
files so that any additional tests and analyses like quantile
regression or hypothesis testing can be carried out with ease.

There are other examples of benchmarking frameworks
that incorporate subsets of the principles adopted by SHARP.
Popper [21] is the name given to an experimentation methodol-
ogy that increases reproducibility by combining the following
elements: version control; package management; orchestration
and environment capture; infrastructure automation; dataset
management; data analysis and visualization; performance
monitoring; continuous integration; and automated performance
regression testing. Beyer ef al. discuss challenges in repro-
ducible benchmarking of complex programs on a modern node
and suggest some Linux tools (and a framework) to control
and limit some of the sources of variability [22].

On the cloud front, some frameworks specifically address
the variability introduced by interference and networking
noise (23], [24]. The Duet procedure for cloud benchmarking
is based on the assumption that performance fluctuations due
to interference tend to impact similar tenants equally, and
attempts to maximize the likelihood of such equal impact by
executing the measured artifacts in parallel [25]. Similarly,
Kuhlenkamp et al. presented an experiment design and toolkit
to measure the elasticity of FaaS services and evaluated it on
AWS, Azure, GCP, and IBM [26].

With the recent emergence of serverless computing, a number
of benchmarks and microbenchmarks have been proposed as
well, albeit for homogeneous architectures [1]], [27]], [28I], [29I],
[30], [31]. The high level of abstraction and the opaqueness
of the operational side make the reproducible evaluation of
serverless platforms particularly challenging [32]]. For example,
Eismann er al. show that Microservices can exhibit high
response-time variability, even across repeated runs of the
same experiment [33]]. Regression testing of the variability can
be accomplished with enough repetitions and using the Mann-
Whitney U test. Another framework that is more application-
centric, BeFaaS, was presented by Grambow et al. and
evaluated on AWS, GCP, and Azure [34]. Similarly, Barcelona-
Pons and Garcia-Lopez presented a framework called SeBS that
emphasizes the performance of parallel applications, evaluated
on AWS, Azure, GCP, and IBM [35]. The SeBS study is also
notable in that it specifically examined the variability of various
serverless benchmarks on commercial platforms and not just its
mean performance [1]], and we use it as a reference point for
the empirical evaluation. Another popular framework for mi-
croservices (not necessarily serverless) called DeathStarBench
includes diverse types of CPU applications [36], and a suite of
GPU applications by Danalis et al. was implemented in both
OpenCL and CUDA [37].

To reduce performance variability in such benchmarks,
Mariani et al. use hardware-independent counters (based
on the PISA tool from LLVM’s IR) to build a model to
predict performance on the cloud. Their work uses design of
experiments to minimize the effect of noise on the predictions. It

predicts median performance, so it does not address variability
beyond trying to reduce it.

As a complementary approach, Patki et al. treat variability
(or the lack of reproducibility) as something to be traded
off for performance. Their study defines a desirability metric
for run times as e~"meanxvariance and attempts to maximize
it, or in other words, to minimize variability and run time
concurrently. The method used borrows from graph signal
analysis to identify the parameters that have a strong influence
on performance or variability [12]. On the other hand, a
large-scale study of cloud performance data shows that
variability is inescapable, even when careful experimental
methodology is used. The reviewed performance studies
rarely report variability and use only a few repetitions per
experiment. This survey’s recommendation is therefore to use
“sufficient repetitions and sound statistical analyses™ [13].

VIII. CONCLUSION

The performance evaluation of high-performance systems
needs to grow more robust to enable reliable and informed
decisions both in research and industry.

The key contributions of our work are twofold: (a) we
quantify and explore the variable, unreliable and intertwined
world of performance evaluation in HPC systems, and (b)
we propose SHARP, an open-source benchmarking framework
that addresses these issues by following a reproducibility-first
approach. Going beyond the widely-used point summaries of
performance, SHARP focuses on the performance distribution as
the key objective for reproducible assessment and comparisons.
Enabling this idea in practice involves several significant chal-
lenges: (a) comparing similarities of performance distributions;
(b) identifying optimal sample size for reliable performance
results; and (c) maintaining similar system and experiment
states across different runs.

Within SHARP, we develop effective ways to address
these key challenges by providing: (a) a distribution-centric
performance analysis approach based on Similarity Metrics;
(b) an automatic determination of the appropriate sample size
through a diverse set of Stopping Rules; and (c) comprehensive
recording of experimental conditions and results to further
support reproducibility. We evaluate our approach using 20
Rodinia benchmarks on 3 HPC servers with different CPU and
GPU configurations. We demonstrate the need for distribution-
based statistics by showcasing their advantages over point
summaries. We also show the effectiveness of the stopping
rules of SHARP in attaining reliable performance results while
minimizing resource usage up to ~90% relative to a fixed
number of experiments with the same level of statistical detail.

Ambitiously, we envision SHARP as a way to catalyze and
unite researchers and practitioners in providing reliable and
reproducible performance evaluations. We provide SHARP as
an open-source software that is also containerized with its
prerequisites, and supports running containerized benchmarks.
We plan on supporting and extending the framework and invite
the community to help us in our goal.

[1]

[2

—

[4

=

[5

=

[6]

[7]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“SeBS: A serverless benchmark suite for function-as-a-service computing,”
in Proceedings of the 22nd International Middleware Conference, pp. 64—
78, 2021.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tima, and A. Tosup,
“Methodological principles for reproducible performance evaluation
in cloud computing,” Transactions on Software Engineering, vol. 47,
pp. 1528-1543, July 2019.

C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Communications of the ACM, vol. 59, no. 3, pp. 62-69, 2016.
J. Vitek and T. Kalibera, “Repeatability, reproducibility, and rigor in
systems research,” in Proceedings of the Ninth ACM International
Conference on Embedded Software, EMSOFT 11, (New York, NY, USA),
p. 33-38, Association for Computing Machinery, 2011.

S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking is
still not as easy as you think,” Transactions on Parallel and Distributed
Systems, vol. 27, pp. 3617-3630, Mar. 2016.

J. Scheuner, Performance Evaluation of Serverless Applications and
Infrastructures. PhD thesis, Chalmers University of Technology and
Gothenburg University, Sweden, 2022.

M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang,
and R. H. Deng, “CrowdBC: A blockchain-based decentralized framework
for crowdsourcing,” IEEE transactions on parallel and distributed
systems, vol. 30, no. 6, pp. 1251-1266, 2018.

0. Novo, “Blockchain meets IoT: An architecture for scalable access
management in 1oT,” IEEE Internet of Things, vol. 5, no. 2, pp. 1184—
1195, 2018.

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: Algorithm and applications,” Future
Generation Computer Systems, vol. 97, pp. 849-872, 2019.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, et al., “A configurable
cloud-scale DNN processor for real-time ai,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pp. 1—-
14, IEEE, 2018.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al., “Azure
accelerated networking: SmartNICs in the public cloud,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pp. 51-66, 2018.

T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: That is the question,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1-30, ACM/IEEE, Nov. 2019.

A. Uta, A. Custura, D. Duplyakin, L. Jimenez, J. Rellermeyer, C. Maltzahn,
R. Ricci, and A. Tosup, “Is big data performance reproducible in modern
cloud networks?,” in symposium on networked systems design and
implementation (NSDI), pp. 513-527, ACM, Feb. 2020.

R. D. Peng, “Reproducible research in computational science,” Science,
vol. 334, no. 6060, pp. 1226-1227, 2011.

NAS, “Statistical challenges in assessing and fostering the repro-
ducibility of scientific results: Summary of a workshop,” 2016.
https://www.ncbi.nlm.nih.gov/books/NBK350355/.

T. B. Arnold and J. W. Emerson, “Nonparametric goodness-of-fit tests
for discrete null distributions,” The R Journal, vol. 3, pp. 34-39, 2011.
https://doi.org/10.32614/RJ-2011-016.

B. Baumer and D. Udwin, “R markdown,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 7, no. 3, pp. 167-177, 2015.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in International Symposium on Workload Characterization (IISWC),
pp. 44-54, IEEE, 10 2009.

T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance
results,” in Proceedings of the international conference for high per-
formance computing, networking, storage and analysis (SC), pp. 1-12,
IEEE/ACM, Nov. 2015.

A. B. De Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and
P. F. Sweeney, “Why you should care about quantile regression,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 1, pp. 207-218,
2013.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

1. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “The Popper convention:
Making reproducible systems evaluation practical,” in International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1561-1570, IEEE, July 2017.

D. Beyer, S. Lowe, and P. Wendler, “Reliable benchmarking: requirements
and solutions,” International Journal on Software Tools for Technology
Transfer, vol. 21, pp. 1-29, Feb. 2019.

D. De Sensi, T. De Matteis, K. Taranov, S. Di Girolamo, T. Rahn, and
T. Hoefler, “Noise in the clouds: Influence of network performance
variability on application scalability,” SIGMETRICS Perform. Eval. Rev.,
vol. 51, p. 1718, jun 2023.

N. Buchbinder, Y. Fairstein, K. Mellou, I. Menache, and J. S. Naor,
“Online virtual machine allocation with lifetime and load predictions,”
SIGMETRICS Perform. Eval. Rev., vol. 49, p. 9-10, June 2022.

L. Bulej, V. Horky, P. Tuma, F. Farquet, and A. Prokopec, “Duet
benchmarking: Improving measurement accuracy in the cloud,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE), pp. 100-107, ACM, Apr. 2020.

J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wenzel,
“Benchmarking elasticity of FaaS platforms as a foundation for objective-
driven design of serverless applications,” in Proceedings of the 35th
Annual ACM Symposium on Applied Computing, pp. 1576-1585, ACM,
Mar. 2020.

J. Decker, P. Kasprzak, and J. M. Kunkel, “Performance evaluation of
open-source serverless platforms for Kubernetes,” Algorithms, vol. 15,
no. 7, p. 234, 2022.

R. Hancock, S. Udayashankar, A. J. Mashtizadeh, and S. Al-Kiswany,
“Orcbench: A representative serverless benchmark,” in IEEE 15th
International Conference on Cloud Computing (CLOUD’22), pp. 103—
108, IEEE, 2022.

J. Kim and K. Lee, “Practical cloud workloads for serverless FaaS,”
in Proceedings of the 10th ACM Symposium on Cloud Computing
(SOCC’19), pp. 477-477, 2019.

J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation:
A multivocal literature review,” Journal of Systems and Software, vol. 170,
p- 110708, 2020.

T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen,
“Characterizing serverless platforms with serverlessbench,” in Proceedings
of the 11th ACM Symposium on Cloud Computing (SOCC’20), pp. 30-44,
2020.

C. Abad, I. T. Foster, N. Herbst, and A. Iosup, “Server-
less computing (dagstuhl seminar 21201),” in Dagstuhl Re-
ports, vol. 11, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2021. https://drops.dagstuhl.de/opus/volltexte/2021/14798/pdf/ da-
grep_v011_i004_p034_21201.pdf.

S. Eismann, C.-P. Bezemer, W. Shang, D. Okanovié, and A. van
Hoorn, “Microservices: A performance tester’s dream or nightmare?,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE), pp. 138-149, ACM, Apr. 2020.

M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “Befaas: An application-centric benchmarking framework
for FaaS platforms,” in 2021 IEEE International Conference on Cloud
Engineering (IC2E), pp. 1-8, IEEE, Oct. 2021.

D. Barcelona-Pons and P. Garcia-Lépez, “Benchmarking parallelism
in FaaS platforms,” Future Generation Computer Systems, vol. 124,
pp. 268-284, 2021.

Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 3-18, ACM, Apr. 2019.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing
(SHOC) benchmark suite,” in Proceedings of the 3rd workshop on
general-purpose computation on graphics processing units (GPGPU,
pp. 63-74, ACM, Mar. 2010.

APPENDIX
A. Abstract

The artifact contains SHARP’s implementation along with
the detailed instructions of running a variety of functions over a
number of backends including Docker, Knative and Fission. The
framework also contains Dockerfiles to build container images
from sratch. The artifact can be accessed via the public reposi-
tory on GitHub (https://github.com/HewlettPackard/SHARP).

B. Artifact check-list (meta-information)

o Model: Statistical models for stopping criteria
Run-time: Docker, Knative serverless environment
Execution: Rodinia function invocations with SHARP
Metrics: Execution time, NAMD, KS Statistic
Output: CSV logs, visualizations, statistical reports
Publicly available: Yes

Code licenses: MIT License

Archived DOI: 10.5281/zenodo.13147448

C. Description

1) How to access: The SHARP’s repository can directly
be cloned from GitHub (https://github.com/HewlettPackard/
SHARP).

2) Hardware dependencies: SHARP can be used to run
different functions over a variety of backends and hardware.
You can run Rodina or other functions in SHARP with different

hardware configurations but it may not produce similar results.

To reproduce the results close enough to the paper following
hardware is recommended:

¢ Machine 1 and 2: AMD EPYC 7443 with Nvidia A100X
80GB GPU.

e Machine 3: Intel Xeon 8468V with Nvidia H100 80GB
GPU.

3) Software dependencies: All the software and hardware
dependencies along with installation instructions are available
with the code repository and can be found here. For

4) Models: The code contains statistical models for imple-
menting various stopping rules (Fixed, CI, KS). To reproduce
the results close enough to the paper following software
specification is recommended:

¢ OS: Linux 5.15.0-116-generic

o Nvidia Driver Version: 550.90.07
« CUDA Version: 12.4

e Docker Version: 24.0.7

D. Installation

You can clone the SHARP repository from GitHub: ‘git
clone https://github.com/HewlettPackard/SHARP’ and follow
the README instructions to set up the environment variables
and configure your experiment.

E. Evaluation and expected results

The evaluation focuses on comparing the reproducibility and
efficiency of different stopping criteria. The KS-based stopping
rule is expected to significantly reduce the number of required
runs while maintaining accurate performance distributions, as
shown in our experimental results.

https://github.com/HewlettPackard/SHARP
https://github.com/HewlettPackard/SHARP
https://github.com/HewlettPackard/SHARP
https://github.com/HewlettPackard/SHARP/blob/main/docs/setup/README.md

	Introduction
	Context and Motivating Examples
	SHARP: Methodology
	Reproducibility
	Methodological Innovations in SHARP

	SHARP: Architecture and Implementation
	Empirical Evaluation
	Experimental setup
	Benchmarks
	Testbed Setup
	Similarity Metrics

	Evaluating similarity: point-summary vs distribution based
	Evaluating stopping criteria: summaries vs. distributions

	Use Cases for SHARP
	Use case 1: Fine-Grained Application Analysis
	Use case 2: Comparing GPU accelerators
	Use case 3: Evaluating the effect of parallelism

	Related Work
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Models

	Installation
	Evaluation and expected results

