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Abstract

Since the dawn of Quantum Computing (QC), theoretical developments like Shor’s

algorithm proved the conceptual superiority of QC over traditional computing. However,

such quantum supremacy claims are difficult to achieve in practice because of the techni-

cal challenges of realizing noiseless qubits. In the near future, QC applications will need

to rely on noisy quantum devices that offload part of their work to classical devices. One

way to achieve this is by using Parameterized Quantum Circuits (PQCs) in optimization

or even in machine learning tasks.

The energy requirements of quantum algorithms have not yet been studied extensively. In

this article we explore several optimization algorithms using both theoretical insights and

numerical experiments to understand their impact on energy consumption. Specifically, we

highlight why and how algorithms like Quantum Natural Gradient Descent, Simultaneous

Perturbation Stochastic Approximations or Circuit Learning methods, are at least 2× to

4× more energy efficient than their classical counterparts; why Feedback-Based Quantum

Optimization is energy-inefficient; and how techniques like Rosalin can improve the energy

efficiency of other algorithms by a factor of ≥ 20×. Finally, we use the NchooseK high-level

programming model to run optimization problems on both gate-based quantum computers

and quantum annealers. Empirical data indicate that these optimization problems run

faster, have better success rates, and consume less energy on quantum annealers than on

their gate-based counterparts.
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1 INTRODUCTION

1.1 Quantum Technologies

After nearly a century of quantum theory and more than 40 years since the foundational papers on the subject by Richard Feynman1, the race to
practicalQuantumComputing (QC) is still in full swing2. Tominimize decoherence and other errors inQC, popular technologies like superconducting
transmon qubits3 rely on extremely low temperatures tomaintain andmanipulate the quantum state. Sustaining these low temperatures—although
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not directly related to the calculations—is energy-intensive. On the other hand, there are also emergent QC technologies with little or no depen-
dency on low temperatures and which are therefore less energy-intensive. Examples of these technologies are photonic quantum computers4 and
computers based on diamond nitrogen vacancy (NV) qubits5.

Perhaps one of the most challenging QC technologies to implement, both theoretically and pragmatically, is topological QC, which is postulated
to make use of the elusive Majorana qubits6. Although these computers are mostly theoretical at the moment, the technology to build them is
within reach. While topological quantum computers might prove to be disruptive by greatly reducing the need for error correction, this actively
researched technology may still depend on low temperatures7.

With the continuing diversification of the sector it is hard to predict which quantum technologies will form the future QC ecosystem. Simi-
larly to what happened with classical computing, energy efficiency surely will help shape this technological race. In this regard, aside from the
energy requirements of the quantum calculations themselves, the energy spent on auxiliary systems (e.g., cooling) must also be considered. Lastly,
algorithmic choices can also have an impact on sustainability. However, these analyses are far from simple as many of these algorithms are imple-
mented as hybrid workflows with no clear separation between classical and quantum components. Indeed, the focus of this paper is related to the
latter subject. Here we perform an exploration of the energetic advantages of quantum optimization algorithms over classical ones. Specifically,
in the next sections we examine the theoretical reasons for the energetic advantages of a group of quantum algorithms while further supporting
these insights with numerical experiments. Finally, we also evaluate the performance and energy consumption of quantum algorithms on the two
dominant hardware paradigms for quantum computers: Gate-Based QC vs Quantum Annealing.

1.2 Hybrid Workflows and Quantum Algorithms

The development of quantum error correction codes injected new energy into QC research and development. However, the QC community is still
far from producing fault-tolerant quantum computers8. If the sequence of gates in a quantum circuit (i.e., its “depth”) is anything but short, the
propagation of errors soon renders the calculation useless. Acknowledging these challenges, the research community has adopted a pragmatic
approach: in the long term, researchers continue to investigate the building of precise and scalable quantum computers; in the short term, they try
to solve practical computational problems by mixing classical and quantum computers.

The development of a hybrid workflow environment that includes both classical and quantum computations requires dynamic runtimes that
optimize application execution. In this regard, multiple challenges need to be solved. First, there are no standards for developing quantum appli-
cations. Second, it is unclear how to decide which parts of the application should run in the quantum system and which in the classical system. At
the moment, most solutions running these types of hybrid workflows rely on the creation of ad hoc runtime environments close to the quantum
hardware. Additionally, users can be given access to the runtime environments through some form of cloud technology like in the case of IBM’s
quantum Qiskit runtime environment9. In this contribution we abstract ourselves from the details of the runtime and execution environments.
While those features are important, they are rapidly evolving. Here we prefer to concentrate on theoretically-based features of quantum algorithms
which are less likely to be fundamentally affected by the nuances of the runtime environments.

The rest of the paper is organized in the following manner: Section 2 focuses on the ideas behind the estimation of energy consumption during
elementary quantumoperationswith emphasis on superconducting qubit devices. Section 3 illustrates the theoretical basis for the energy efficiency
of several quantum optimization algorithms and performs numerical experiments to corroborate and quantify these gains. Finally, in Section 4 we
perform a deeper evaluation of quantum optimization in both gate-based devices and quantum annealers. Sections for discussion and conclusions
wrap up the article.

2 ENERGY CONSUMED IN QUANTUM OPERATIONS

Different quantum technologies necessarily differ in their power requirements, if only because of the variety of physical principles onwhich they are
based. A full-stack energy model for superconducting qubits has recently been described10. A practical implication of this model is the possibility
to correlate the power consumption to the shape of the circuit that runs on a QC. Here, shape is the rectangle formed by the number of qubits
(Nqubits) and the depth of the circuit (Ndepth). The area of the shape Ashape = Nqubits × Ndepth is a proxy for the quantum memory used in the
calculation. After estimating the energy consumption per gate the power consumption of the full circuit also can be estimated10.

To estimate energy consumption per gate, we leverage the work of Jaschke andMontangero11, which recently discussed the green quantum ad-
vantage of a few algorithms and hardware platforms. From their work we can derive the energy consumed by different quantum gate technologies.
The starting point is the empirical equation for the energy consumed by a quantum circuit:

Ecircuit =
(
Ngates × r × Psystem

)
/ ωgate, (1)
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Quantum technology Gate operation energy (J)

Rydberg atoms ≈ 15× 103

Trapped ions ≈ 15.0
Superconductors ≈ 0.18

Table 1 Approximate energy consumed during the operation of generic quantum gates using different quantum computing technologies. hard-
ware11

Device Runtime Power/circuit Power/gate
(s) (W) (W)

ibmq_qasm_simulator 0.554 6.823 0.569
simulator_mps 1.230 3.073 0.256
simulator_statevector 0.859 4.400 0.367
ibmq_lima 4.441 0.851 0.071
ibmq_belem 4.090 0.924 0.077
ibmq_quito 4.610 0.820 0.068

Table 2 Power Consumption per gate for a Quantum Circuit shown in Figure 1 on various IBM Simulators and Devices

where Ngates is the number of gates in the circuit, r is the number of circuit repetitions needed to achieve the required fidelity, Psystem is the
total system power during circuit execution including cooling, and ωgate is the estimated gate application frequency. We plugged Ngates = 1,
r = 1000, and gate frequencies (ωgate) for different quantum technologies into Equation 1 to estimates for the energy consumed by Rydberg atoms
and superconducting technologies, and we used a different estimate from Jaschke and Montangero11 to calculate the equivalent values for the
trapped-ion technology. Our estimates for the energy consumed by a quantum gate using these technologies is shown in Table 1.

With these per-gate energy values we can estimate the total energy consumed by a quantum circuit using superconducting technology. Specif-
ically, given the energy consumption per gate Egate, the number of qubits Nqubits, and the depth Ndepth of a quantum circuit, the total energy
consumed by a circuit Etotal is thus

Etotal = Egate × Nqubits × Ndepth. (2)

We illustrate the convenience of these equations by using them in the small quantum circuit shown in Figure 1. This circuit has four parameters
equally distributed in two parameterized layers. The circuit operates on three qubits, has a total of twelve gates, and has a depth of seven. Assuming
an energy consumption per gate of ≈ 0.18J for a superconducting quantum computing system (Table 1), and using Equation 2, the total energy
consumption of the circuit in Figure 1 is ≈ 3.78J. We conducted experiments by running this circuit on various IBM superconducting quantum
simulators and devices and recorded their respective runtimes, as presented in Table 2. The total power consumption per circuit Pcirc is computed
as Pcirc = Etotal/Trun, where Trun is the total runtime on each device, and the power consumption per gate Pgate is computed as Pgate = Pcirc/Ngates,
where Ngates is the number of gates on the circuit. The results of these computations are also shown in Table 2.

q0 : RY (π4 ) RZ (0.432) • •

q1 : RY (π3 ) RZ (–0.123) • RY (0.543) •

q2 : RY (π7 ) RX (0.233)

c : /1 0
��

Figure 1 Parameterized quantum circuit (PQC) used in the experiments

We observe in Table 2 that real quantum devices (ibmq_lima, ibmq_belem, and ibmq_quito) have longer runtimes for quantum circuits than
simulators (ibmq_qasm_simulator, simulator_mps, and simulator_statevector). This could be due to a variety of factors, including noise, poor
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connectivity, and a scarcity of resources. Environmental factors such as temperature fluctuations, magnetic fields, and vibrations cause noise and
errors in real quantum devices. These errors can cause qubits to lose their quantum state, resulting in inaccurate measurements. Simulators, on the
other hand, lack these environmental factors and can simulate ideal quantum circuits with perfect qubits.

Furthermore, connectivity between qubits in real quantum devices is limited by the physical constraints of the device, which means that opera-
tions between qubits that are not directly connected may require additional steps that can increase the circuit’s runtime. Simulators often assume
complete connectivity between qubits and can perform operations on any pair of qubits with no extra overhead. Real quantum devices have lim-
ited resources, such as the number of qubits and operations that can be performed in a single run. This means that more complex circuits may
need to be broken down into smaller parts, which can lengthen the circuit’s overall runtime. We acknowledge that while simulators can provide a
faster and more idealized simulation of quantum circuits, real devices provide a more accurate representation of the challenges and limitations of
current quantum technology.

As illustrated in this section, some progress has been made regarding the characterization of energy consumption on quantum computers.
However, there is still no clear consensus on the metrics that should be use to report energy efficiency in these calculations. For classic computers,
performance is usually reported in floating point operations per second (FLOPs), and the consumed power is reported in watts. Combining these
two concepts, energy efficiency can be readily expressed in FLOPs per watt. In quantum computing, metrics of overall system quality such as
quantum volume12,13,14 and algorithmic qubits15 have industry support from IBM and IonQ, respectively, although neither metric is universally
accepted. In this work, in contrast, we take as our main metric the overall energy consumption during a quantum calculation expressed in joules (J).

3 QUANTUM OPTIMIZATION

Oneway to capitalize on the strengths of heterogeneous hardware environments is to reformulate problems of interest as a variational optimization
problem16. The approach is to offload all but the most compute-heavy subroutine to a classical computer. This lowers the requirements for the
quantum calculations (e.g., circuit depth) and consequently also reduces the error rate, energy consumption, and overall cost for using quantum
devices. Ideally, one should only execute on the quantum computer those subroutines that are intractable or hard for classical computers. In this
context, the reformulation of quantum optimization as a variational problem usually implies that the classical computer applies some form of pre-
processing to parameterize a quantum circuit. The quantum computer then executes the quantum circuit and performs measurements intended
to estimate the expected values of calculations that can, for instance, be encoded as a cost function. These measurements are post-processed
and passed to classical optimization or machine-learning (ML) algorithms. Either way, parameters are updated on every iteration to minimize a
cost function17. As we discuss in the next few sections, working with parameterized quantum circuits (PQCs) enables additional performance
improvements on optimization problems as they are a core element in variational approaches.

The following sections target specific quantum optimization algorithms and strategies. Although not a complete list by any means, these algo-
rithms have been selected to reflect the growing variety of ways in which quantum optimization algorithms can operate. For each algorithm we
have included sections for theory and numerical experiments. Our take on the theoretical background specifically highlights those elements that
affect energy consumption during the execution of these algorithms. The numerical experiments were chosen to display prototypical use cases of
these algorithms and a comparison with their classical counterparts where appropriate. In most cases these experiments were performed using
the code repositories and runtime environments from PennyLane18 and Qiskit9.

3.1 Quantum Natural Gradient (QN-GD)

Theory

Vanilla Gradient Descent (V-GD) aims to minimize a cost as a function of parameters in Euclidean space. However, Euclidean geometry might be
suboptimal19 so, in practice, different parameterizations of the cost might require different learning rates or step sizes. The shortcomings of V-GD
can be addressed bymultiplying the Euclidean gradientwith the Fisher informationmatrix (F). This procedure transforms V-GD from an optimization
in Euclidean space to an optimization in the space of the probability distributions (i.e., the probability distribution of outputs generated by a certain
input). The resulting optimization is known as natural gradient descent19. Working with PQCs has several implications (e.g., quantum states in
Hilbert spaces). Here, the assumption of Euclidean geometry in the parameter space is clearly inadequate20. As in the classical case, we can fix
this by multiplying the Euclidean gradient, this time with the Fubini-Study metric tensor (g+), which nicely reduces to F in the classical case21. This
generalization is known as quantum natural gradient descent (QN-GD)22.

Besides increasing the chances of finding the true minima of the system independently of the parameterization used, the introduction of QN-
GD has implications related to the number of quantum circuit executions and consequently to the energy spent in these calculations. We first
briefly examine how V-GD operates classically and then introduce the differences with its quantum variant.
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V-GD and several other classic optimizations that currently are used in quantum calculations use parameter-shift rules to evaluate the partial
derivatives (i.e., the gradient). Full derivation of these rules can be found in Schuld et al.23. For simplicity we show only an abstract general
framework illustrating the points related to circuit evaluation.

For a single unitary gate U(θi) depending on the parameter θi, a simplified circuit quantum function that aims to estimate the expected value of
a Hamiltonian H based on the measurement of the random hermitian observable B can be written as

H = ⟨ψ|U†(θi)BU(θi)|ψ⟩

Significant work on deriving parameter-shift rules goes first into expressing the above unitary conjugation as a linear transformation T acting over
B and differentiable in θi:

U†(θi)BU(θi) = Tθi (B)

∇θiH = ⟨ψ|∇θiTθi (B)|ψ⟩

Lastly, some effort has to be expended on expressing this gradient as a linear combination of the same transform T but for two different values
for the parameter (e.g., θi+s, θi–s):

∇θiTθi (B) = c[Tθi+s (B) – Tθi–s (B)]

where c is a generic multiplier, the shift s depends on the transformation and does not need to be infinitesimal. Ultimately, that last equation implies
that only two quantum circuit evaluations on the shifted parameters are needed to determine this gradient. Note that this is a simplified case; other
parameter-shift rules might require additional circuit evaluations24.

QN-GD differs from V-GD mainly in the evaluation of the Fubini-Study metric tensor g+, which has a set of interesting properties with appli-
cations in pure mathematics and quantum physics. Regarding quantum optimization, although the use of g+ is theoretically justified, this tensor
cannot directly be evaluated on quantum hardware, and therefore its implementation relies on several approximations. For example, the PennyLane
library18 implements the block-diagonal approximation to estimate the Fubini-Study metric tensor22.

Formally, we start from a parameterized quantum circuit U(θ), with the parameters (θ1, θ2, . . . , θd) distributed in L circuit layers. On each layer
we can have non-parameterized gates Nl and parameterized gates Pl(θl) with θl = {θ(l)1 , θ

(l)
2 , . . . , θ

(l)
n }, with nl parameters. It can be proven that a block

diagonal approximation of the Fubini-Study tensor has the form,

θ1 θ2 · · · θL


G(1) 0 · · · 0 θ1
0 G(2) · · · 0 θ2
...

...
. . .

...
...

0 0 · · · G(L) θL

Here Gl is a sub-matrix for layer l with dimensions nl × nl. Gl is a covariance matrix built using the observables measured after the evaluation of all
the previous layers. (For details see Stokes et al.22.) This approximation implies that the number of circuit evaluations for QN-GD isNeval = 2×d+L.
For V-GD this number is simply Neval = 2× d.

Numerical experiments

We ran numerical experiments to compare the optimization convergence of V-GD and QN-GD for two systems. The first simulates a single-qubit
circuit, and the second represents a generic PQC from Figure 1. As expected, the single-qubit calculation converged faster. For QN-GDwe reached
convergence with ≈ 250 circuit evaluations for a single qubit and ≈ 500 circuit evaluations for the PQC (Figure 2). On the other hand, QN-GD
was decisively superior to V-GD. Specifically, with respect to QN-GD, V-GD used 3.2× more circuit evaluations to optimize a single qubit and 3×
more circuit evaluations to optimize the PQC from Figure 1.

In quantum computing lingo, a shot is a single execution of a quantum algorithm or circuit on a quantum device. To estimate the energy-efficiency
of QN-GD over V-GD we assume that (a) to obtain the expected value of the cost function we would need to run a quantum circuit Nshots = 1000
times for every point in Figure 2, (b) the number of steps saved would be Nsaved = 550 for the single qubit and Nsaved = 1000 for the PQC, and
(c) the energy and power to run these circuits only once can be used directly or derived from Tables 1 and 2. Then, to estimate the energy savings,
we simply multiply Nshots × Nsaved × Etotal, giving us ≈ 3.7× 103J for the PQC and ≈ 100J for a single qubit.
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Figure 2 Comparing optimization convergence rates between V-GD and QN-GD for (a) a single qubit and (b) the parameterized quantum circuit
(PQC) from Figure 1.

3.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

Theory

The parameter-shift rules23 require two circuit evaluations around the selected parameter θ1,2d = θ∗d ± s (using the shift s = π
4 for rotational

gates Rx, Ry, and Rz). From those, the partial derivatives (and gradients) used in several quantum optimization algorithms can be obtained directly.
Exact gradients are not strictly necessary for minimizing a cost function. Gradient approximations can be used as well, and this is the strategy of
the methods described in this section. An approximate gradient can be obtained using a stochastic factor δ instead of a fixed analytical shift s,
which can have practical advantages. In an optimization that relies on a parameter vector θ of size p, there are two basic ways to proceed: (1) The
stochastic factors can be included in the parameter vector one element at the time. Each update is then immediately followed by an evaluation of
the cost function. This path leads to the Kiefer-Wolfowitz finite difference stochastic approximation (FDSA) method25; (2) The stochastic factors
can be included in all the elements of the parameter vector at the same time, and the evaluation of the cost function can be performed just twice
at the end. This path leads to the simultaneous perturbation stochastic approximation (SPSA) method26. Therefore for FDSA, the number of cost
function evaluations (circuit executions) scales linearly with p while for SPSA, independently of the size of the parameter vector θ, the circuit is
evaluated only twice. Besides this difference, the update rule for these algorithms is similar to the classical vanilla gradient descent (V-GD):

θ̂k+1 = θ̂k – akĝk(θ̂k)

where ĝk is the approximate gradient estimated with parameters θ̂k and ak > 0 is the learning rate.
The approximate gradient can be found with this expression:

ĝki(θ̂k) =
y(θ̂k + ck∆k) – y(θ̂k – ck∆k)

2ck∆ki

Here, ∆k = (∆k1,∆k2, ...,∆kp)T is a p-dimensional random perturbation vector. It has been shown that if ∆k is chosen appropriately, the simul-
taneous perturbation is just as effective for optimization as the FDSA approach and can be performed at a fraction of its computational cost. As
mentioned in Section 3.1, the introduction of the Fubini-Study metric tensor (gij) improves upon V-GD by generalizing the restrictions imposed by
an optimization in the Euclidean space of parameters. This generalization increases the probability of finding global minima but is not scalable. gij
is a p× p tensor, and therefore its calculation turns into a computational burden when performing complex quantum circuits with a large number
of parameterized gates. To alleviate these problems, quantum natural SPSA (QN-SPSA) merges the innovations from both SPSA and QN-GD by
making stochastic approximations of both the gradient and the Fubini-Study metric tensor27.

Numerical experiments

The theory section above indicates that the number of parameters to optimize is an important part of this method, but the circuits used here are
slightly larger than in Section 3.1. We use a construction template from the PennyLane library called qml.StronglyEntanglingLayers, based on
the work of Schuld et al.28. In the simplest case, by selecting a circuit that should run with Nqubits = 4 and Nlayers = 5 we create a circuit with
d = Nqubits × Nlayers × 3 = 60 trainable parameters (rotational gates), and Nqubits × Nlayers = 20 non-trainable parameters (CNOT gates).
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The number of gradient or circuit evaluations (Neval) for V-GD and SPSA differs noticeably. For V-GD it depends on the number of parameters
d, rendering Neval = 2× d× Nsteps = 120× Nsteps while for SPSA this number is Neval = 2× Nsteps, independent of the number of parameters to
optimize.

The different convergence rates between V-GD and SPSA as a function of the number of circuit executions or evaluations Neval is shown in
Figure 3. For this case, the scaling difference considering the number of trainable parameters d, is certainly pronounced (120×). This advantage

Figure 3 Comparing optimization convergence rates between V-GD, and SPSA.

drops to only 3× when considering the ability to arrive at the same minimized value of the cost function. These gains can be expected to become
more important as d increases. We can now estimate the energy savings from using SPSA in the circuit used in this section. Once again we consider
Nshots = 1000 for every point in Figure 3. The number of saved steps from the figure isNsaved = 400. The circuit used in this section hasNgates = 80,
which we will assume to have identical energy consumption at any position in the circuit and with energy consumption values reported in Tables 1
and 2 for superconducting qubits. Given these parameters, the energy that can be saved by using SPSA instead of V-GD to optimize the circuit is
≈ 5.7 kJ.

3.3 Quantum circuit structure learning (Rotosolve and Rotoselect)

Theory

PQC optimizers often take advantage of parameter-shift rules23 to evaluate phase-shifted expectation values of the circuit and return the gradient,
which is used to minimize the cost function (encoded as a Hamiltonian). Two circuit evaluations per optimization step are needed to accomplish
this. The methods in this section use a similar phase-shifted strategy but avoid the gradient calculation. Both Rotosolve and Rotoselect have a
similar theoretical justification29. Starting from parameterized gates of the form Ud = exp(–i(θd/2)Hd), where θd ∈ (–π,π] and Hd is a Hermitian
unitary operator (i.e., we are using rotation gates Rx, Ry, and Rz). Then, the expected value of the Hamiltonian as a function of the selected gate,
given that all other parameters and gates are fixed, has a sinusoidal form: ⟨M⟩θd = A sin(θd +B) +C. The sinusoidal function can be characterized by
estimating the values of A, B and C, achieved by sampling the expected values of the Hamiltonian at specific gate angles. A closed-form expression
for the optimal angle (the one that minimized the Hamiltonian) is

θ∗d = θ – π
2
– arctan

(2⟨M⟩θ – ⟨M⟩θ+π
2
– ⟨M⟩θ–π

2
⟨M⟩θ+π

2
– ⟨M⟩θ–π

2

)
+ 2kπ .

This expression implies that for a selected gate one can calculate the optimal value analytically (gradient-free) using three circuit evaluations.
Furthermore, since the values for any of the rotation gates for θd = 0 are identical (Rx(0) = Ry(0) = Rz(0) = 1), then for circuits with a number of
parameterized gates equal to 1, 2, and 3, one will need 3, 5, and 7 circuit evaluations respectively. The difference between Rotosolve and Rotoselect
lies only in the scope of the optimization cycle. With fixed gates and restricting the optimization to the parameters, the resulting algorithm is
Rotosolve. If every optimization step includes the type of gate (Rx, Ry, or Rz), then the resulting algorithm is Rotoselect. Either way, within each
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optimization cycle a greedy approach is followed: for each generated or fixed gate and every parameter the optimized values are calculated while
leaving all the other parameters and gates fixed. The process continues until a stopping criterion is met.

Numerical experiments

We performed numerical experiments to compare Rotosolve and Rotoselect with V-GD. The algorithms were tested on a toy circuit with a single
rotational gate applied to each (Nqubits = 2, Ndepth = 1, Nparameters = 2). Figure 4 displays the optimization of the corresponding Hamiltonian as a
function of circuit evaluations (Neval).

Figure 4 Comparing optimization convergence rates between V-GD, Rotosolve and Rotoselect. We used a simple circuit with two parameterized
gates running on 2 qubits.

As in previous sections, we use parameter-shift rules23 for V-GD. That is, we performed two circuit evaluations per circuit. V-GD for this small
circuit reaches a minimum after ten optimization steps. In the cases of Rotosolve and Rotoselect, the minimum is reached in a single step. For
Rotosolve, one step takes seven circuit evaluations, and the cost function finds the same value as V-GD. On the other hand, Rotoselect finds a
lower value in the cost function by additionally optimizing the type of gates to be used (circuit structure learning). This indicates that both V-GD
and Rotosolve were stuck in local minima.

Despite both Rotosolve and Rotoselect making additional circuit evaluations per optimization step, both algorithms found equal or better so-
lutions than V-GD with less than half the overall number of circuit evaluations. In this example, Rotosolve and Rotoselect observe an advantage
of ≥ 2.6× with respect to V-GD. The circuit used in this section is fairly small so the energy savings in absolute value is negligible but is reported
for completeness. Assuming as usual Nshots = 1000, the steps saved from using Rotosolve and Rotoselect are respectively 35 and 25. The energy
savings with respect to V-GD are ≈ 12J and ≈ 9J, for Rotosolve and Rotoselect, respectively.

3.4 Frugal shot optimization (Rosalin)

Theory

The number or shots or single executions of a quantum circuit has become a de factometric for pricing the rental of quantum devices, and there are
at least two powerful reasons why this metric is likely to stay. First, current quantum devices are noisy, which means that to create the illusion of a
logical qubit, the information must be encoded into several physical qubits using sophisticated quantum error correction techniques30. Depending
on the technology, the number of physical qubits required to accomplish this varies significantly. A promising solution to this problem could be the
implementation of the elusive Majorana qubit for topological quantum computing6. However, even if a noiseless quantum computing is built, the
second reason for having multiple shots for any calculation is the nondeterministic nature of quantum computing.
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To the best of our knowledge, there is no general formula or solution to estimate the number of shots required to run a quantum algorithm
to a certain accuracy. Nevertheless, in this section we describe a method that can be use to optimize the number of shots in some optimization
problems. The method is called Random Operator Sampling for Adaptive Learning with Individual Number of Shots (Rosalin)31.

Rosalin’s approach to minimize the number of shots starts with a cost function that can be expressed as the expected value of a Hamiltonian
C = ⟨H⟩. The underlying assumption is that this Hamiltonian can be expressed as a weighted sum of measurable and generally non-commuting
operators {hi}:

H =
N∑
n=1

cihi

In the sense of quantum mechanics, non-commuting operators represent variables that cannot be measured simultaneously, such as the classic
example of position and momentum in Heisenberg’s uncertainly principle. The practical implication is that the expected value of the Hamiltonian
can be calculated from the expected values of the individual operators or variables ⟨hi⟩ and that a different number of shots might be needed (and
optimized) for each of them. Rosalin’s goal thus can be framed as follows: given a budget of shots, how can they be distributed over the variables
(i.e., by sampling hi) for amaximum impact of every shotwhile providing an unbiased estimation of ⟨H⟩? As described briefly below, Rosalin combines
a sampling redistribution strategy with the core idea of an adaptive optimizer named individual Coupled Adaptive Number of Shots (iCANS)32.

There are several ways in which shots could be redistributed to sample the variables ⟨hi⟩ although not all of them will lead to an unbiased
estimation of ⟨H⟩ and its variance. Arrasmith et al. describe these strategies in detail31, but here we simply list them: (1) uniform deterministic
sampling, where the shots are equally distributed among the N variables hi; (2) weighted deterministic sampling, where the shots are distributed in
proportion to the coefficients ci of the variables; (3) weighted random sampling (WRS), where a variable hi is selected for sampling with probability

pi =
|ci|∑N
n=1 |ci|

and (4) weighted hybrid sampling (WHS), a combination of (2) and (3). It is important to note that the first two methods are deterministic while the
last two have at least some stochastic elements. To have any hope of obtaining unbiased estimators of ⟨H⟩ and its variance, one should avoid using
the deterministic methods by themselves. The introduction of randomness is the factor that ultimately enables unbiased estimators with as little as
a single shot in Rosalin. In fact, Arrasmith et al.31 use the last two strategies, naming the resulting algorithms Rosalin1 and Rosalin2, respectively.

Some additional background must be presented to explain the other main component of Rosalin, which is essentially a slight modification of
iCANS. The starting point is that shot frugality comes from the study of continuity in smooth uniform functions. These characteristics are related
to the learning rate (α) used in most optimization algorithms, most notably gradient descent. Generally speaking, if α is selected to be small,
convergence, at least to a local minimum, is practically guaranteed at the cost of having to perform a large number of optimization steps. Ideally, it
would be convenient to have an analytical expression for the open bound of the gradient as this would help select a proper learning rate. Kübler
et al.32 use a strong form of function continuity named Lipschitz continuity to explore these issues. By definition, a function is Lipschitz-continuous
if there is an L (Lipschitz constant) that fulfills the condition

∥∇f(θt+1 –∇f(θt))∥ ⩽ L∥θt+1 – θt∥

for all θt+1 and θt, and where ∥.∥ is the l2 Euclidean norm. It can be proven that gradient descent converges as long as α ⩽ 2
L
33, even though

L is an unknown property of the cost function and cannot generally be exploited in machine learning. For cost functions encoded in the type of
Hamiltonians described in this section one can estimate an upper bound for L as

L <
N∑
n=1

|ci|

Analytical solutions also can be found (and L can be accessed) if the variables of the Hamiltonian are, for instance, single-qubit rotation gates. In
Rosalin, after a first sampling pass using a small number of shots for each operator hi, the usual optimization routine is followed—estimation of the
gradient gi and its variance vi using the classic updating rules to perform a step of gradient descent. But an innovation is introduced at this point:
the estimation of the expected gain per shot (improvement in ⟨H⟩) for every single operator hi (or parameter θi). This improvement takes the form

γi =
1
si

[(
α – Lα2

2

)
g2i – Lα2

2si
vi

]
.

For the next iteration, one can calculate a new number of shots si for each operator hi as the number of shots that maximizes γi:

si =
( 2Lα
2 – Lα

) vi
g2i

.

Aside from these core features, the algorithm is fine-tuned with additional heuristics as well as hyper-parameters for convergence smoothness and
regularization.
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Numerical experiments

Using the Pauli matrices X, Y, and Z as generators for operators hi, a valid Hamiltonian could be

H = 3I⊗ X + 6I⊗ Y + I⊗ Z

with coefficients c = [3, 6, 1]. Following the theory explained above, it is possible to recreate sampling strategies for the number of shots on each
gate. Despite this being a toy example, the same analysis applies to complex Hamiltonians with a large number of operators hi.

Figure 5 Comparing optimization convergence rates between V-GD, the Adam optimizer and Rosalin.

We performed numerical experiments using a small Hamiltonian explicitly expressed using five non-commuting operators, each with a coef-
ficient: cihi. The resulting circuit has two qubits, and the calculations within the circuit are distributed across two layers. Following the theory
described above for Rosalin, the cost function built from the Hamiltonian requires a minimal number of shots Minshots to determine the expected
value for each operator ⟨hi⟩, then monitors how fast the number of shots si recommended for each operator hi changes and adapts accordingly the
recommendation for the next optimization step. At each optimization step k, the expected value of the global Hamiltonian is calculated as usual;
⟨H⟩k =

∑
ci⟨hi⟩k.

Under equivalent conditions and using the parameter-shift rule23 to estimate the parameter gradients, the number of shots needed for Rosalin
to estimate the gradient is at least 20 times shorter than the corresponding number of shots for the Adam optimizer or V-GD. For our small
Hamiltonian, this leads to an energy savings of only 18J. Due to the reduced number of shots required, Rosalin’s advantage should be more than a
factor of 20 for larger circuits, and the total energy savings also should scale up quickly—although here we do not make any strong claims regarding
scalability beyond what seems reasonable to assume given the theory behind these methods.

3.5 Combinatorial optimization (FALQON/QAOA)

Theory

This section describes two optimization algorithms: the quantum approximate optimization algorithm (QAOA)34 and the Feedback-based
ALgorithm for Quantum OptimizatioN (FALQON)35. These algorithms have similar applications and theoretical backgrounds. Both are based on
the relationship between time-dependent Hamiltonians and quantum circuits. The motivation for this relationship comes from both directions,
theory and implementation, and appears complementary. On one side, all but the simplest quantum systems evolve in time and are therefore dy-
namic; here we might be interested in mapping physical reality to quantum calculations. On the other hand, to solve certain optimization problems,
it might be useful to think of a quantum circuit as a time-dependent physical Hamiltonian.

The mapping of a complex Hamiltonian into a reliable quantum circuit remains an art more than a science. However, significant progress has
been made to characterize the building blocks of these mappings. The success of these constructs relies in understanding that the time evolution
is the link that supports the generation of quantum circuits from Hamiltonians. Plainly stated, even a circuit gate can be seen as an implementation
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of time evolution under a well-crafted Hamiltonian. That is, a gate is a transformation of the input state described by a unitary time evolution
operator that depends explicitly on the Hamiltonian (H) and a scalar time t (although t can be substituted by a generic scalar γj):

U(H, t) = e–iHt/h̄ = e–iγjH .

In principle, using these newly defined gates to build larger circuits for generic Hamiltonians with many non-commuting terms should be a simple
task:

H = H1 + H2 + H3+, ..., +HN .

Alas, this construction is not so simple in practice. Circuit generation is an NP-hard problem because of the exponential growth of the Hilbert space
with the size of U(H, t)36. Additionally, current quantum computers are noisy37 so it is desirable to keep the circuit depth as shallow as possible.
Due to these limitations, circuit generation relies on approximate time-evolution operators that can be derived using the Trotter-Suzuki (or Lie)
formulas38. In its simplest form, this Trotterization mechanism states that for m×m real or complex matrices A and B,

eA+B = lim
n→∞

(eA/neB/n)n .

The approximation to the exact Hamiltonian then can be written as

U(H, t, n) =
n∏
j=1

∏
k
e–iγjH/n

where H =
∑

k Hk and U approaches the exact solution e–iγjH as n grows to N.
One last piece of theory needed for these algorithms comes from quantum Lyapunov control methods39, which aim to identify ways to control

the dynamics of a quantum system using feedback loops. To use this framework, we can imagine encoding the solution to our optimization in a
cost Hamiltonian Hc and “drive” its expected value to a minimum using another Hamiltonian Hd. That is H = Hc +β(t)Hd, where the time-dependent
term β(t) is a control equation that tries to capture the “driving/drifting” strategy. An ideal procedure minimizes monotonically the expected value
of the cost Hamiltonian ⟨Hc⟩ = ⟨ψ(t)|Hc|ψ(t)⟩ by choosing a β(t) such as

d
dt

⟨ψ(t)|Hc|ψ(t)⟩ ≤ 0,∀t .

There is ample flexibility to choose β(t) to satisfy these constraints. An iterative approach is by selecting
d
dt

⟨ψ(t)|Hc|ψ(t)⟩ = A(t)β(t)

A(t) = ⟨i[Hc,Hd]⟩t
β(t) = –A(t)

which results, by design, in a strictly decreasing minimization of the cost Hamiltonian:
d
dt

⟨ψ(t)|Hc|ψ(t)⟩ = –|⟨i[Hc,Hd]⟩t|2 ≤ 0 .

It can be shown that a Trotterization of these [Hc,Hd] Hamiltonians takes the shape

U(T) = e–iβnHd∆te–iHc∆t, ..., e–iβ1Hd∆te–iHc∆t

= Ud(βn)Uc, ...,Ud(β1)Uc .

Each term Ud(βk)Uc with k = 1, 2, 3, ..., l can be considered a layer in a quantum circuit. Each layer requires a βk , which in FALQON is obtained
from the previous layer: βk+1 = –Ak. Additionally, by manipulating ∆t, the algorithm can alternate the execution of Ud and Uc in the same layer.
These features enable estimations of ⟨Hc⟩ that improve monotonically with the evaluations of additional layers in the quantum circuit. Therefore,
FALQON does not rely on an external (classical) optimization algorithm; everything happens in the quantum device. On the other hand, QAOA
introduces an additional set of parameters in the cost Hamiltonian. A layer in QAOA takes the form Ud(βk)Uc(γk). The optimization in QAOA over
the 2l parameters β⃗ = (β1,β2, ...,βl) and γ⃗ = (γ1, γ2, ..., γl), which can be expressed as the minimization of ⟨ψ(β⃗, γ⃗)|Hc|ψ(β⃗, γ⃗)⟩, is performed by an
external, classical optimizer. Therefore, despite using similar equations, QAOA is fundamentally different from FALQON.

Besides the implications of these two strategies for the number of circuit evaluations, QAOA seems to be more likely to get trapped in local
minima than FALQON. Certainly, facilitated by their similar theoretical background, both approaches can complement each other when solving
complex optimization problems.
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Numerical experiments

Although both QAOA and FALQON can be applied to a variety of optimization problem, they both are usually found in the context of theMaximum
Cut problem (MAX-CUT) in network theory.We run numerical experiments tomeasure execution differences betweenQAOAand FALQON running
on a MAX-CUT problem with a small network of five nodes.

Figure 6 Minimization of the energy cost for a MAX-CUT problem on a five node network using QAOA, FALQON and a combination of both
algorithms.

The results of the optimizations for this use case are not completely unexpected given the theoretical background on both methods. QAOA is
a well-known optimization procedure, but Figure 6 shows that it can be sub-optimal in finding the global minimum of the cost function. While for
simple networks, this is less likely to happen, for complex networks getting trapped in local minima rapidly becomes a liability. Regarding energy
consumption though, QAOA uses quantum devices for the evaluation of the cost function and any other classically implemented optimization
method to estimate the gradients, which means that it can be implemented with two circuit evaluations per training parameter per optimization
step when using parameter-shift rules23. This is energetically convenient for small quantum circuits but as we saw in Section 3.2, it scales badly
with the number of parameters.

In contrast to QAOA, FALQON appears relentless in its search for global minima, but this comes at a cost. While FALQON avoids using classical
devices and optimization algorithms altogether, it relies on the execution of circuits of increasing size at each step. Therefore, the energy consump-
tion per step increases with each circuit evaluation instead of being constant as it is with QAOA. FALQON is, however, energetically efficient in that
it avoids the communication overhead between quantum and classical devices. However, the energy savings related to this are difficult to estimate.

Ignoring the overhead of the communication between classical and quantum devices, we can still estimate the energy consumption of the
purely quantum calculation using our approach. For instance, a circuit with 25 gates performing five optimization steps will consume 22.5kJ in
QAOA and 45kJ in FALQON. These numbers clearly show that FALQON can rapidly grow disadvantageous if its performance is not monitored
carefully. For large optimization projects, it might be preferable to estimate or benchmark the consumption of both methods and use a combination
of them as represented by the “FALQON/QAOA” curve in Figure 6. That effort would include, for instance, short runs of the energy-consuming
FALQON algorithm to start the optimization or whenever QAOA gets trapped in a local minimum and longer runs of QAOA to minimize the cost
function at relatively low energy consumption per step. Figure 6 indicates that this strategy is likely to outperform both individual methods without
compromising on energy efficiency.

3.6 Differentiable quantum transforms (DQTs)

Theory

In this section, we describe a strategy for quantum error mitigation implemented under the powerful framework of differentiable quantum
transforms (DQTs)40. The idea of differentiation is commonplace in optimization and machine learning. DQTs provide a useful abstraction to dif-
ferentiation and are implemented in the PennyLane library18,40. In previous sections, we already used differentiation in the context of PQCs. That
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is, if one views a PQC as a quantum function or quantum program S with m parameters θ = (θ1, θ2, ..., θm) then S is considered differentiable if
dS/dθi is defined for every possible value of each θi. The parameter-shift rules23 that we have used already to calculate partial derivatives in pre-
vious sections explicitly take advantage of the differentiability of PQCs. In this context, differentiation itself is a function transform in the sense
that takes as input a function with differentiable variables θ (i.e., a PQC or f(θ)) and returns another function with derivatives g(θ) = ∇f(θ). A trans-
form T can also have n parameters τ = (τ1, τ2, ..., τn). A DQT is a function that preserves the differentiability of its transformation while itself being
differentiable (dT /dτi is defined for all τi). Additionally, DQTs are composable; that is, if T and U are DQTs then V = T · U is also a DQT. This
composability property facilitates the use of complex transformations in quantum computing. Here we use one application of DQTs relevant to
quantum optimization: error mitigation.

Contemporary quantum computing requires programmers to be able to work with noisy devices37. To obtain precise results, quantum calcu-
lations necessarily will have to be backed by some form of error-correction or error-mitigation techniques. Given access to low-level hardware
control, programmers can manipulate the pulse formulation of each gate, study the noise scaling, and re-calibrate the gates accordingly. However,
doing so requires substantial time and expertise. An intermediate approach to use DQTs.

In the framework of DQTs, error mitigation is a transform M that reduces the noise of a quantum function f∗(θ) giving as output a mitigated
function f̃(θ) which is closer to the exact noiseless quantum function f(θ). That is,

f∗(θ) 7−→ f̃(θ) ≃ f(θ) .

To be useful,M should still ensure that the resulting mitigated function is differentiable (d̃f(θ)/dθ should exist for all values of θ). One such error
mitigation transforms is zero noise extrapolation (ZNE)41. The basic idea of ZNE is to increase the noise in a quantum calculation in a controlled and
scalable way, collect data along the way, and subsequently extrapolate back to estimate the expected value of the calculation at zero noise level.
We start by defining the expected value of a quantum calculation at noise level λ as E(λ). If λ = 1 is the current noise of the quantum calculation
and λ = 0 is the ZNE we want to estimate, then we first need to find ways to scale noise (and measure E(λ)) for λ > 1. Although in principle, this
can be done by correlating λ with any physical measure of noise in the system (e.g., temperature), in practice ZNE is implemented using a trick
called unitary folding.

If U is a unitary matrix (representing, e.g., a gate, layer, or circuit) then U can be replaced by U(UU†)n because UU† = I. The expected value
of the calculation does not change but the number of physical operations on the device scales as 1 + 2n, and the noise should scale accordingly.
Giurgica-Tiron et al. report further theoretical details and numerical experiments on noise scaling and extrapolation methods to achieve ZNE41.

Numerical experiments

To evaluate noise control, we performed our simulations on a Hamiltonian that represents a quantum version of the Ising model:

H = –J
(∑

⟨i,j⟩
ZiZj + g

∑
j
Xj

)
.

Here, the observables (Zi, Xi) can be represented with Pauli gates, and J and g are arbitrary energy and coupling factors, respectively. The Ising
model (even the quantum version) is one of the simplest systems for which analytic solutions have been derived. These solutions therefore can be
evaluated directly (red dashed line in Figure 7) and estimated by optimization algorithms if the Hamiltonian is mapped to a parameterized quantum
circuit.

Aside from providing idealized and noiseless quantum-computing simulators, the PennyLane library18 also supports the creation of ad hoc noisy
channels using a choice of noise types and a specified noise level. These noise channels then can be added to an ideal device to simulate noisy
qubits or channels. Pennylane additionally implements the ZNE error mitigation technique41 discussed in the theory section above. ZNE can be
applied to a modeled noisy device to mitigate the errors during a calculation and obtain results closely resembling those obtainable on actual
quantum devices.

We used Adam as the classical optimizer for the experiments represented by Figure 7. The Adam optimizer ran purely on the classical device
(CPU) while the cost function was evaluated on quantum simulators with different noise levels roughly categorized as Noisy, Mitigated, and Ideal.
The runs show that while the noise-mitigated device closely follows the ideal one, the value of the cost function never reaches the exact analytical
solution. Only the ideal device is able to converge to the analytical solution. Similar results were obtained using V-GD as classical optimizer, but
convergence to the exact solution by the ideal device required more optimization steps.

Although it seems obvious that error-mitigation techniques like ZNE should have a significant impact on the energy-efficiency of quantum
optimization, unlike the other cases we explored in this article, this effect is difficult to quantify. We performed longer simulations using both
the Adam optimizer and V-GD (not shown) and in both cases, the noiseless device eventually found the exact solution, but both the noisy and
error-mitigated devices converged at different values of the cost function. We suggest that ZNE’s energy-efficiency contributions to quantum
optimization require additional investigations.
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Figure 7 Circuit optimizations highlighting the effect of the Zero Noise Extrapolation (ZNE) error mitigation technique.

While error mitigation is not the primary subject of this paper, in the next section we study the absence of error mitigation in some detail by
evaluating a quantum optimization algorithm (QAOA) on quantum hardware. Specifically, we illustrate the relationship between the success rate
of these calculations, which are heavily impacted by noise, and their energy efficiency.

4 EVALUATION ON QUANTUM HARDWARE

Section 3 evaluated the energy of quantum algorithms using numerical experiments. This section complements that evaluation with empirical
studies on modern quantum hardware. We constrain our scope to the QAOA algorithm34, which was discussed in Section 3.5, configured to solve
the Minimum Vertex Cover problem. We use the NP-hard formulation of the problem: Given a graph, what is the smallest subset of vertices such
that at least one endpoint of each edge lies in that subset? (This subset is called the minimum vertex cover.) By way of example, Figure 8 presents
a 20-vertex (disjoint) graph with a minimum vertex cover shaded. Note that minimum vertex covers are not necessarily unique.
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Figure 8 A 20-vertex graph with a minimum vertex cover shaded

4.1 Methods

As discussed in Section 3.5, QAOA solves problems by minimizing a cost Hamiltonian Hc. Consequently, finding a minimum vertex cover for a
given graph must be expressed as a Hamiltonian and ultimately as a quantum circuit. Rather than manually work out a circuit for each problem
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instance, we rely on a higher-level programming system, NchooseK, which compiles a set of problem-specific hard and soft constraints into a QAOA
formulation and runs this on a quantum computer42,43. NchooseK provides the added benefit that it can compile the same constraints for gate-
based quantum computers, quantum annealers, and classical solvers. A quantum annealer is a device that is hard-wired to minimize a quadratic Hc

using a procedure that is analogous to QAOA but implemented in hardware.
NchooseK is based on repeated use of a single primitive, notated as nck(N,K) and interpreted as “K of N Boolean variables must be true”. More

precisely, N is a multiset of variables and K is a set of whole numbers. If exactly k ∈ K of the variables in N are true, the constraint is satisfied.
For example, nck({A,B}, {0, 2}) is satisfied by {A = false,B = false} or {A = true,B = true} but no other possibilities. Variables can be repeated both
within and across constraints. All instances of a variable are assigned the same value. In addition to the default, “hard” constraints, NchooseK
supports “soft” constraints, denoted by nck(N,K, soft). The semantics is that NchooseK will satisfy all hard constraints and as many soft constraints
as possible.

A Minimum Vertex Cover problem is straightforward to express in NchooseK:

Given a graph G = (V, E),
∀(u, v) ∈ E, nck({u, v}, {1, 2}), and
∀v ∈ V, nck({v}, {0}, soft).

In this formulation, each vertex has an associated Boolean variable, with true indicating inclusion in the minimum vertex cover. The first line of
constraints requires that each edge have either 1 or 2 of its vertices set to true. This constructs a vertex cover but not necessarily a minimal one.
The second line of constraints requests—but does not require—that each vertex variable be set to false (i.e., not part of the vertex cover). Because
NchooseK will minimize the number of vertices it sets to true, this promotes the construction of a minimum vertex cover.

The NchooseK compiler first translates a problem into a quadratic unconstrained binary optimization (QUBO) problem: argminx xTQx, with
Q ∈ RN×N and x ∈ {0, 1}N. For example, NchooseK compiles the graph shown in Figure 8 to the matrix

Q =



–20 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0
0 –20 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 –41 21 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 –62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 –20 21 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 –62 0 0 21 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 –20 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 –62 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 –41 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 21 0 0 0 –62 0 0 0 0 0 0 0 0 21
0 0 0 0 0 0 0 0 0 0 0 –20 0 0 0 0 0 0 0 21
0 0 0 0 0 0 0 0 0 0 0 0 –41 0 0 21 0 0 0 21
0 0 0 0 0 0 0 0 0 0 0 0 0 –41 0 0 21 21 0 0
0 0 0 0 0 0 0 0 21 0 0 0 0 0 –62 0 0 21 0 0
0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 –62 21 0 0 0
0 0 0 0 21 0 0 0 21 0 0 0 0 0 0 0 –83 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –41 0 0
0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 –20 0
0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 –83


This, in turn, is compiled to a circuit for Hc constructed (nominally) with one Rz(θ) gate per array element, with the rotation angle being a function
of the element’s value, plus an two additional CNOT gates per off-diagonal element. Our argument is that it is much easier to express a Minimum
Vertex Cover problem with NchooseK than to construct a circuit for Hc by hand.

The following quantum computers were used for an empirical evaluation of the energy required to solve Minimum Vertex Cover problems:

1. IBM Q Cusco. Cusco is a 127-qubit Eagle r3 circuit-model quantum processor (v1.0.4). On this platform we consider both one and two
QAOA iterations (sets of {β, γ} parameters).

2. D-Wave Advantage. The two specific annealing-model quantum processors used were a 5614-qubit Advantage (v6.2) and a 563-qubit
Advantage2 prototype (v1.1).

Because QAOA is a variational quantum algorithm, it runs multiple quantum jobs until a termination criterion is reached. In all cases, we use
Nshots = 1000, as in the rest of this paper.

In the current noisy intermediate-scale quantum (NISQ) era37, errors are rampant. Hence, a meaningful energy estimate must take the QAOA
algorithm’s success rate into consideration. We use as our metric the estimated mean energy to a successful solution, which we define as follows:

EQAOA = Etotal × Njobs/Psuccess , (3)
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where Etotal is as defined by Equation 2 and uses Egate = 0.18 as per Table 1;Njobs is the number of jobs needed for Qiskit’s9 QAOA implementation
to converge (an average of 30 for one QAOA iteration and an average of 46 for two iterations); and Psuccess is the probability of observing a
successful sample based on the Nshots shots taken.

To estimate the energy consumed by solving aMinimum Vertex Cover problem on the D-Wave Advantage quantum annealer we follow a similar
but not identical approach:

EQA = P× T/(Nshots × Psuccess) , (4)

where P is the system’s maximum rated power (25 kW according to its data sheet44), T is the total QPU (quantum processing unit) access time for
Nshots shots, and Psuccess is the probability of observing a successful sample.

We define the following terms to describe each sample:

invalid The subset of vertices proposed by the QPU do not cover all edges.

valid The vertices cover all edges, but strictly more are required than the number determined by a classical heuristic.

successful Equal or fewer vertices appear in the cover than what were found by the classical heuristic.

optimal The vertices represent a true minimum vertex cover as determined by a classical, complete solver.

That is, a solution must be valid to be successful and successful to be optimal.
As a classical heuristic, we use the min_weighted_vertex_cover function from NetworkX45. This returns a vertex cover whose size is guaran-

teed to be no larger than twice the minimum vertex cover. We classically compute the true minimum vertex cover using Microsoft Research’s Z3
satisfiability modulo theories (SMT) solver46, which is supported as an NchooseK compiler back end and therefore works from the same problem
specification as the quantum back ends.

4.2 Empirical results

We measured the QPU time needed for the IBM Q and D-Wave Advantage to propose 1000 solutions to a Minimum Vertex Cover problem.
Problem sizes ranged from 8–160 vertices. To account for variability, each experiment was repeated five times. Figure 9 plots, on a logarithmic
scale, the median of those five runs for IBM Q Cusco performing one iteration of QAOA, IBM Q Cusco performing two iterations of QAOA, and
D-Wave Advantage and D-Wave Advantage2 performing quantum annealing in hardware. For comparison to a classical solution, Figure 9 includes
three additional curves. The IBM Q Simulator curve represents a cloud-based, noise-free simulator running the QAOA algorithm. The NetworkX
curve represents NetworkX’s heuristic solution to the Minimum Vertex Cover problem. The Z3 curve represents Z3’s guaranteed-exact solution to
the Minimum Vertex Cover problem.

The data show that the circuit-model runs take substantially longer than the annealing-model runs. Some of this is to be expected becauseQAOA
requires tens of parameterizations of each circuit, at 1000 shots apiece, versus a single 1000-shot run on the quantum annealer. The quantum
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simulator requires time that increases exponentially in the number of vertices (and therefore simulated qubits) as would be expected due to the
cost of exploring an exponential state space. The classical heuristic requires time that grows relatively slowly with vertex count. The time for the
exact solver grows exponentially as would be expected for an NP-hard problem.

The next figure, Figure 10, tallies the number of successful samples out of the 1000 samples taken. Recall from Section 4.1 that “successful” is
defined as “at least as good as NetworkX’s classical heuristic”. Each data point plotted in Figure 10 represents the median of five runs. NetworkX
and Z3 data are omitted from the graph because they are guaranteed to observe a 100% success rate.

The results are fairly pessimistic for QAOA. Cusco observes a maximum success rate of only 80 samples (1 QAOA iteration) or 120 samples
(2 iterations) out of 1000. To distinguish whether environmental noise or the QAOA algorithm is the greater source of the low success rates, we
include results from IBMQ’s noise-free quantum simulator. The success rate is not much better, achieving a maximum of only 138 out of the 1000
samples. We therefore can conclude that QAOA’s failure to converge to a successful solution is more of an issue than the quantum state being
disrupted. To put QAOA’s success rate in context Figure 10 includes a Random curve, which represents a random selection of between k/2 and k
vertices, where k is the size of NetworkX’s heuristic solution. The IBMQ Cusco, IBM Q Cusco 2 iters, and IBM Q Simulator curves are qualitatively
similar to Random, implying little benefit over random guessing. (The coefficients of correlation are 0.90, 0.54, and 0.70, respectively.) Interestingly,
QAOA is far more likely to produce a valid vertex covering than random guessing, averaging 328, 300, and 586 samples out of 1000 for graphs of
size 8–28 versus only 43 for random guessing. No optimal solutions were observed for graphs of larger than 16 vertices, which is why we stopped
measuring QAOA data long before running out of qubits.

The D-Wave runs fare much better, reaching a peak success rate of 976/1000 for the Advantage and 999/1000 for the Advantage2. However,
success rates drop off rapidly as the problem size increases.

Figure 11 divides the Figure 9 data by the Figure 10 data to compute the mean time to success. That is, if all 1000 shots are successful—the case
for all of the NetworkX and Z3 data—the mean time to success is the time for a single shot. If fewer than 1000 shots are successful, the mean time
to success corresponds to the time for multiple shots. While visually similar to Figure 9, Figure 11 includes more separation between the curves,
highlighting the need for additional runs when success rates are low. While the IBM Q Simulator runs faster than Z3 on small problems, its mean
time to success is higher due to its low success rates.

Given the timing data from Figure 11, it is straightforward to apply Equations 3 and 4 to compute the energy for, respectively, IBMQ Cusco and
D-Wave Advantage. The results are plotted in Figure 12. As indicated by that figure, the D-Wave Advantage2 consumes the least energy to produce
a vertex cover that is no worse than that produced by NetworkX’s classical heuristic, with the D-Wave Advantage being only slightly worse. The
IBM Q Cusco jobs consume substantially more energy. The high energy costs are due in part to QAOA’s low success rates on the Minimum Vertex
Cover problem, in part to the circuit area (well over 10,000 for the larger circuit sizes), and in part to the number of QAOA jobs needed to inform
the minimum eigenvalue optimizer.

One characteristic of QAOA is that its classical optimizer (e.g., COBYLA47) requires multiple samples to form a gradient, which is used to
extrapolate new {β, γ} parameters for each job launch. In particular, a single sample—even on an ideal, noise-free QPU or simulator—is inadequate.
Hence, the QAOA data in Figures 11 and 12 are more properly interpreted not as the time or energy for a single success but as 1/Nshots the time
or energy needed for Nshots successes, assuming a suitably large Nshots (e.g., the 1000 used throughout this article).
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5 DISCUSSION

Classical computers’ energy consumption is dominated by the electronic circuitry. In contrast, most of the energy consumed by quantum computers
goes to secondary tasks such as cooling the quantum system to temperatures close to absolute zero.While the physics related to themanufacture of
these cryogenic systems is relatively well understood48, much less is known about the energetic details of the quantum operations themselves. This
is challenging both at an abstract level (i.e., the theoretical energy of the quantumoperations themselves, independent of the support infrastructure),
and also at a more practical level (i.e., the energy transformations related to specific quantum technologies). The energy transformations during the
execution of a quantum algorithm running on a selected quantum device is a complex combination of the aforementioned factors.

In this studywe explored the potential for energy efficiency in quantumoptimization algorithms.We also explored the impact of other techniques
designed for the improvement of practical issues in quantum optimizations. For instance, it would be desirable to reduce of the number of circuit
evaluations (shots) and still make good estimates of the expected value of the cost Hamiltonian Hc.

We approached the topic by first exploring the limited literature on energy profiles of quantum computation. We supported the findings in this
sectionwith additional estimates of energy consumption in both simulators and quantumdevices. Although Table 1 reports the energy consumption
for several gate technologies, in practice we only used the values corresponding to superconducting qubits because they are the most widespread
in the platforms (IBM Q) and libraries (PennyLane) used in this paper. We extended energy estimates from gates to a small quantum circuit that
was executed on several simulators and devices (Table 2). These experiments provide a baseline for the variability of quantum energy evaluations
in a single device and also among different quantum devices. The same basic assumptions for energy consumption were then extended to other
sections of the paper describing numerical experiments with different optimization algorithms.

We also describe the theoretical basis of each algorithm presented here, highlighting those features with practical consequences for their energy
efficiency. For instance, algorithms can differ in the number of quantum circuit evaluations per optimization step they need.While trying to account
for different approaches, some common features that can be directly linked to energy efficiency can be understood by analyzing the theory. Trade
offs between minimization of the cost function and energy efficiency are common across several algorithms. For instance, QN-GD needs more
circuit evaluations per step than V-GD and therefore appears disadvantaged from an energy-consumption perspective. However, QN-GD more
than compensates for this disadvantage by searching better for the global minimum. That is, while QN-GD executes more circuit evaluations
per optimization step, it needs fewer steps to find the minimum and ends up saving energy. The ultimate reason for the improved optimization
efficiency in QN-GD is the introduction of a factor (the Fubini-Study metric tensor) that generalizes the geometry of the parameter search space.
For other algorithms, however, we observe that while the reason for the advantage might differ (e.g., introduction of gradient approximations for
SPSA, gate optimization for Rotoselect, etc.), the effect is similar to that described for QN-GD. We note that in some cases, such as with the
FALQON algorithm, the energy efficiency can fade rapidly if the global minimum is not found in relatively few steps. While FALQON has the
advantage of performing its optimization purely in a quantum device, the number of layers in the circuit grows at every iteration and therefore each
circuit evaluation becomes more expensive in terms of energy consumption. As the optimization problem grows in scale (e.g., MAX-CUT applied
to increasingly large networks), it becomes more advantageous to use a combination of FALQON and QAOA to exploit both the relatively high
search efficiency of FALQON and energy-efficiency of QAOA.

We performed numerical experiments to gather evidence of optimization algorithms’ energy efficiency. We found that for the most part the
experiments support the expectations behind the theoretical basis of the selected algorithms. Specifically, most of the quantum optimization
algorithms explored here appear to be between 2 and 4 times more energy-efficient than their classical counterparts (with the exception of
FALQON). On the other hand, a general technique like Rosalin showed a substantial energy advantage, with ≥ 20× gains) Although ZNE was not
methodically examined here, we believe that this technique also has great potential.

A systematic exploration of energy efficiency in quantum optimization is far from trivial. In the theory sections, we highlighted different strate-
gies, some still under active development. In this regard, our study has some known shortcomings. For instance. we could not easily accommodate
algorithms using specialized gates49, techniques to escape barren plateaus during optimization50 or the use of quantum analytic descent to build
approximate classical models of the quantum landscape51, to name a few. In our exploration of these topics, we found invaluable the code base,
demos and papers from the development communities of both Pennylane18 and Qiskit9.

While numerical studies are important, measurements taken on quantum hardware help put these studies in perspective. Implementing opti-
mization problems (specifically, Minimum Vertex Cover problems) with NchooseK42 enabled these problems to be run on gate-based quantum
computers by expressing them as cost Hamiltonians to QAOA34 and the exact same problem to be run on quantum annealers by expressing them
as QUBOs. Under this fair comparison we found that QAOA struggled to converge to a solution that was at least as good as NetworkX’s45 classical
heuristic. The quantum annealer—which is designed specifically to solve problems of this form—fared much better. As a result, the energy required
to find a solution as good as the classical heuristic differed by several orders of magnitude between the two types of quantum computers.
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6 CONCLUSIONS

In this paper we explored the energy efficiency of quantum optimization algorithms. We reviewed the existing literature regarding the energy
consumed in quantum computing operations and performed simulations to estimate power-basedmeasures for a toy circuit and a generic supercon-
ducting qubit. Subsequently, we theoretically and numerically explored quantum optimization algorithms and related techniques. While providing
numerical examples of energy (and power) savings for each case, we determined that some of the algorithms (QN-GD, SPSA, Rotosolve/Rotose-
lect) are between 2× to 4×more energy-efficient than their classical counterparts. A notable exception was FALQON, an algorithm that uniquely
does not use classical devices but does enlarge its circuit with each iteration, which is devastating to energy efficiency. Rosalin, a technique that can
be applied to other optimization algorithms, reducing energy by at least 20× per minimization step. This improvement is accomplished by optimiz-
ing the number of shots (repetitions) needed to estimate the expected value of the cost function. Error-mitigation techniques like ZNE, although
general and clearly effective, require additional study to assess their impact on energy consumption. Using QAOA to solve NP-hard optimization
problems on contemporary gate-based quantum hardware consumes a substantial amount of energy. Our measurements indicate that this is due
more to the number of circuits and number of shots per circuit needed to converge to a solution than it is to environmental noise, as evidenced by
similar circuit counts being required on a noise-free quantum simulator.
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