Predicting Performance Variability

Mohammed Baydoun

Department of Computer Science
American University of Beirut

Beirut, Lebanon
mb57 @aub.edu.lb

Dejan Milojicic
Hewlett Packard Enterprise
Milpitas, CA, USA
dejan.milojicic@hpe.com

Mohammad Sonji

Department of Computer Science
American University of Beirut

Beirut, Lebanon
mms 158 @mail.aub.edu

Eitan Frachtenberg
Hewlett Packard Enterprise
Milpitas, CA, USA
eitan.frachtenberg @hpe.com

Pedro Bruel

Hewlett Packard Enterprise
Milpitas, CA, USA

bruel @hpe.com

Izzat El Hajj
Department of Computer Science
American University of Beirut
Beirut, Lebanon

Abstract—As computing systems grow increasingly more com-
plex, application performance on these systems is becoming more
variable and less deterministic. Scalar performance summaries
such as mean or median run time do not adequately reflect the
true behavior of an application that can only be gleaned from
the complete performance distribution. However, measuring the
distribution of an application’s performance on a system requires
running the application many times on that system, which can be
an expensive process. To address this challenge, we aim to answer
the question: Can the performance distribution of an application
on a system be predicted by learning from other representative
applications?

We aim to answer this question in the context of two use
cases: predicting the performance distribution of an application
on a system from a few runs of that application on the system,
and predicting the performance distribution of an application
on a system from a measured distribution of that application’s
performance on a different system. To this end, we measure
the performance distribution of a large set of representative
benchmarks and use that information to train prediction models
that predict the performance distribution of new applications.
We consider different alternatives for formulating the prediction
problem as well as different types of prediction models. Our
evaluation compares these alternatives to identify the best for-
mulation and model to use for each use case, and shows that
many application performance distributions can be predicted
with reasonable accuracy.

I. INTRODUCTION

Modern computing systems are becoming increasingly more
complex, which hinders reliable performance evaluation. So-
phisticated hardware optimizations, heterogeneity, system soft-
ware, middleware, language runtimes, concurrency, and even
environmental factors all present sources of nondeterminism
that impact performance. It is increasingly the case that the
same code running on the same system with the same input
parameters may exhibit different performance with each run,
a phenomenon known as performance variability [1].

Because of performance variability, analyzing an applica-
tion’s performance on a system by taking the mean or median
of a few runs does not accurately reflect the true behavior
of the application on the system. A faithful performance
analysis of an application on a system requires observing

izzat.elhajj@aub.edu.lb
80 Actual (all samples) Lo Actual (2 samples)
70 0.8
60 '
> >
250 20.6
[)
40 =
£30 £ 04

I
N

90,4 -0.3-0.2-0.1 0.0 01 0.2 03 04 0.0
Relative Time

(a) Measured distribution from 1,000 samples

0.4-0.3-0.2-0.1 0.0 0.1 0.2 03 0.4
Relative Time

(b) Measured distribution from 2 samples

10 Actual (3 samples) 2.00 Actual (5 samples)
1.75
08 1.50
o 9
os: g12s
% <?')_1.00
;“:0.4 £ 0.75
0.2) 0.50
0.25
0.0 0.00

-0.4-03-0.2-0.1 0.0 01 0.2 03 0.4
Relative Time

(c) Measured distribution from 3 samples

0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 04
Relative Time
(d) Measured distribution from 5 samples

3.01 Actual (10 samples) 100 Predicted
2.5
80
52,01 z
5 G 60
215 =
[I
T10 & 40|
0.5 201
0.0

004-63-02-6.1 00 01 02 03 04
Relative Time

(f) Predicted distribution from 10 samples

=0.4-03-02-0.1 0.0 0.1 02 03 0.4
Relative Time
(e) Measured distribution from 10 samples

Fig. 1. Measured and predicted performance distributions of the SPEC
OMP [2] benchmark 376 (see Section IV for experimental methodology)

the full distribution of the application’s performance, which
also gives insight about performance modes and performance
tails, features that are not captured by a scalar performance
summary. For example, Figure 1(a) shows the performance
distribution of the SPEC OMP [2] benchmark 376 measured
from 1,000 sample runs (see Section IV for experimental
methodology). It is clear that the performance distribution
has two modes, with the larger mode being the faster mode.

The mean value is in between the two modes, closer to the
larger mode, which is not entirely representative of how the
benchmark performs.

Evaluating performance variability requires careful exper-
imental design and statistical analysis which is difficult [1],
[3], [4]. Inadequate methodology, such as measuring too
few runs or using reductive summary statistics, can lead to
wrong or misleading interpretations [5], which is regrettably
not uncommon [6]. For example, Figures 1(b,c,d,e) show
the performance distribution of the SPEC OMP benchmark
376 as measured from 2, 3, 5, and 10 samples. Clearly, the
distributions measured from a small number of samples are not
representative of the actual performance distribution shown
in Figure 1(a). On the other hand, an overly conservative
evaluation based on an excessive number of runs such as that
in Figure 1(a) can lead to wasted time and resources. While
some adaptive techniques assist in finding a good compromise
between too many samples and too few [7], even collecting a
minimally adequate number of samples can be too expensive
for some applications.

To address this challenge, we aim to answer the question:
Can the performance distribution of an application on a
system be predicted by learning from other representative
applications? We aim to answer this question in the context
of two use cases. In the first use case, we aim to predict
the performance distribution of an application on a system
from just a few runs of the application on that system. This
use case represents the scenario where a user may need to
frequently inspect the application’s performance distribution
while optimizing it to select what optimization to apply, or
to assess the fitness of an application for being used in
latency-sensitive contexts. In the second use case, we aim
to predict the performance distribution of an application on
a system from a performance distribution of the application
measured on another system. This use case represents the
scenario where a user may be interested in acquiring a new
system and would like to anticipate the suitability of that
system for the user’s application. For both use cases, we
consider different alternatives regarding how to represent an
application’s profile as input features, how to represent an
application’s performance distribution for prediction purposes,
and what kind of predictive model to use.

To evaluate these use cases, we measure the performance
distribution of a large set of representative benchmarks and use
that information to train models that predict the performance
distribution of new applications. Our evaluation compares the
different alternatives discussed to identify the best representa-
tions and model to use for each use case. We also show that
many application performance distributions can be predicted
with reasonable accuracy. For example, Figure 1(f) shows the
performance distribution of the SPEC OMP benchmark 376
that we predict from just 10 measured samples. While not
an exact match to the measured distribution in Figure 1(a),
the predicted distribution in Figure 1(f) displays sufficiently
accurate information about the number of modes as well as
their relative locations and sizes. Our results can be further

improved and generalized by increasing the number and diver-
sity of benchmarks used for collecting training data, as well
as using a larger number of systems for evaluation including
heterogeneous systems with accelerators.

The rest of this paper is organized as follows. Section II
surveys previous works on accounting for, managing, and
predicting performance variability. Section III describes our
use cases and alternatives for formulating the prediction
problem. Section IV presents our experimental methodology,
and Section V evaluates each use case. Finally, Section VI
concludes and discusses future work.

II. RELATED WORK

Modern computing systems hide many complexities under
multiple layers of abstraction. These complexities, and the
interactions between them, make performance less determin-
istic and results in performance variability [8]. This nondeter-
minism may come from: CPUs due to dynamic clock speed,
caches, or speculation [9]; heterogeneity due to the imbalance
between components [10]; system software and middleware
due to power-saving trade-offs, schedulers, garbage collection,
or just-in-time optimizations [11], [12]; concurrency due to
unpredictable execution orderings of parallel tasks [13], [14];
and even environmental factors such as datacenter temperature.

The existence of performance variability poses a challenge
for reproducibility [14]-[17]. For this reason, numerous works
have proposed evaluation methodologies that take variability
into account [3], [6], [13], [18], [19]. These methodologies
include using sufficient repetitions and sound statistical anal-
yses [20], resampling to estimate the sample size that results
in sufficient confidence [1], integrating reproducibility into
DevOps methodology [4], and using quantile regression to
compare distributions [21].

A number of works aim at modeling variability for the
purpose of managing it with different objectives. These ob-
jectives include reducing variability via cache-aware page
allocation [22], trading off variability and performance [23],
scheduling [24], and anomaly detection [25]. Our work aims
at predicting performance variability, rather than modeling it
from a measured distribution, which can also be used to assist
these same variability management objectives.

Many works aim at predicting the performance of an appli-
cation while accounting for performance variability [9], [11],
[12], [26]-[29]. However, these works focus on predicting
large-scale variability caused by interference from other users
such as in cloud environments. On the other hand, our work
aims at predicting small-scale variability caused by system
nondeterminism in the absence of interference.

III. PREDICTING PERFORMANCE VARIABILITY

In this section, we describe our approach testing if the
performance distribution of applications can be predicted. We
start by describing the two use cases under which we predict
performance distributions (Section III-A). We then describe
different alternatives for formulating the prediction problem
(Section III-B).

A. Variability Prediction Use Cases

There are multiple instances where one may want to predict
the performance distribution of an application rather than
measure it. It may be expensive to run the application a large
number of times, or the system on which one would like
to obtain that distribution may not be readily available. In
these cases, predicting the performance distribution instead of
measuring it can be an attractive alternative for a preliminary
performance analysis. In this work, we look at two use cases
under which we predict the performance distribution of an
application on a system: predicting from a few runs on the
same system (Section III-A1), and predicting from a measured
distribution on a different system (Section III-A2). These two
use-cases are illustrated in Figure 2.

1) Use Case #1: Predicting Distributions from a Few Runs:
Figure 2(a) shows our first use case, which is to predict
the performance distribution of an application on a system
from just a few runs on that system. One of the challenges
of measuring the performance distribution of an application
is the need to run the application many times to construct
a representative distribution. This process can be expensive,
particularly for long-running applications and for applications
with complex performance distributions that require a large
number of runs to measure accurately. To overcome this
challenge, we train a system-specific prediction model that
takes a low-level profile of an application from a few runs
and predicts the application’s entire performance distribution.
The representation of an application’s profile is discussed
in Section III-B1 and the representation of the predicted
distribution is discussed in Section III-B2. The model is trained
using a large amount of previously collected data consisting of
the profiles and performance distributions of many benchmarks
on the system of interest.

2) Use Case #2: Predicting Distributions for New Systems:
Figure 2(b) shows our second use case, which is to predict the
performance distribution of an application on a new system
from a measured performance distribution on another system.
For example, a user may be interested in acquiring a new
system and may wonder what the performance distribution
of their application would look like on this new system.
If the user is unable to run their application on the new
system, they may instead run the application on a system
they already own and use the measured distribution on the
old system to predict the performance distribution on the new
system. To accomplish this objective, we train a system-to-
system prediction model that takes the profile and performance
distribution of an application on one system and predicts
the application’s performance distribution on another system.
The representation of an application’s profile is discussed in
Section III-B1 and the representation of the input and predicted
distribution is discussed in Section III-B2. The model is trained
using a large amount of previously collected data consisting of
the profiles and performance distributions of many benchmarks
on both systems of interest. For example, the vendor of the
new system may publish the performance distribution of a set

Prediction
Model

density

~

[\

performance

System 1

metrics _|perfor-
e Tmy[m v.}mkmance
Profiler —> [1 l —
3 [
(a) Use-case #1: Predicting distributions from a few runs
Prediction
— —>
/W Model
performance

(b) Use-case #2: Predicting distributions for new systems or configurations

System 2

AN

performance

Profiler —

density
density

Fig. 2. Variability Prediction Use Cases

of benchmarks and the user may run the same benchmarks on
their old system to collect data for training the model.

B. Variability Prediction Design Considerations

In this subsection, we look at different design considerations
for predicting performance distributions. These considerations
include how to represent an application’s profile as an input to
the prediction model (Section III-B1), how to represent an ap-
plication’s performance distribution as an input or output (Sec-
tion III-B2), and what kind of model to use (Section III-B3).

1) Representing an Application’s Profile: In both use cases,
the prediction models take application profiles as input fea-
tures. Since these models are trained with many different
applications from different sources, the input features in the
application profiles need to be represented in an application-
independent way. For this reason, we abide by the following
two principles when representing application profiles:

o We collect application-independent hardware and soft-
ware metrics such as CPU metrics, cache metrics, TLB
metrics, etc. These metrics can be collected from applica-
tions while treating the applications as black boxes. The
specific list of metrics used in our evaluation is detailed
in Section IV-D.

« Since the applications used for training the models have
different running times, the absolute values of the metrics
collected have different scales. We use relative metrics
normalized per second to ensure that the metrics have
the same scale across applications.

Hence, an application’s profile is represented as a vector of
application-independent hardware and software metrics nor-
malized per unit time, which is fed as the input feature vector
to the prediction models. In the case where multiple runs are
used to construct the input feature vector, we include the mean,
standard deviation, skewness, and kurtosis of each normalized
metric in the input feature vector. We attempted to include
higher-order moments as well, but their impact on prediction
accuracy was insignificant.

2) Representing the Distribution: In both use cases, the
prediction models produce a performance distribution as an
output. In the second use-case, they also take a performance
distribution as an input. Since these models are trained with
many different applications with different absolute running

times, we predict a distribution of the relative time (i.e.,
normalized to mean time) so that the output has the same scale
across applications. Predicting a distribution of relative time
is sufficient because in our use cases, users are ultimately in-
terested in the shape of the distribution. One important design
consideration is how to represent the performance distribution
in the input and output feature vector. We consider three
different design approaches for representing the distribution
for prediction purposes:

o Histogram: The first approach is for the feature vector
to be the bins of a histogram of the relative time, similar
to a discretized PDF.

« PyMaxEnt: The second approach is for the feature vector
to be the moments of the distribution, which are then used
to reconstruct the distribution using the principle of max-
imum entropy [30]. We consider the first four moments:
mean, standard deviation, skewness, and kurtosis.

o PearsonRnd: The third approach is for the predicted
output feature vector to be the first four moments of the
distribution similar to the second approach. However, to
reconstruct the distribution, we instead use the moments
to draw random numbers from the distribution in the
Pearson system with these moments (using pearsrnd in
MATLAB [31]). These random numbers are subsequently
used to reconstruct the distribution itself.

We compare these three approaches for representing the dis-
tribution in Section V.

3) Choice of Prediction Model: We consider three machine
learning models for predicting performance distributions. We
consider k-nearest neighbors (kNN) because of its ability to
deal with noisy data, which is the case for the hardware and
software metrics and the performance distribution data we
collect. We set k to 15, and we use the cosine similarity
as the distance metric as opposed to the Euclidean distance
or other distance metrics which did not perform as well. We
also consider random forests (RF) [32] and extreme gradient
boosting (XGBoost) [33] because of their ability to deal with
a large and diverse set of input features, which is the case
for our application profiles. We compare the accuracy of these
different models in Section V.

IV. EXPERIMENTAL METHODOLOGY

In this section, we detail the tools, benchmarks, systems,
and profiling metrics used in our evaluation.

A. Libraries and Tools

The prediction workflows for training and testing the ma-
chine learning models are implemented in Python in addition
to using Matlab [31] for the pearsrnd function. We use
NumPy [34] and pandas [35] to prepare and process data, and
Python for plotting and leave-one-group-out cross-validation
from Scikit-Learn [36], in addition to SciPy [37] to evaluate
the performance of our models.

TABLE I
BENCHMARKS USED IN THE EVALUATION

Suite Benchmarks
NPB [38] bt, cg, ep, ft, is, lu, mg, sp, ua

PARSEC3.0 [39] blackscholes, bodytrack, canneal, dedup, flu-
idanimate, freqmine, netdedup, streamclus-
ter, swaptions

358, 362, 367, 372, 376

303, 304, 353, 354, 355, 356, 359, 363
bfs, cutcp, histo, Ibm, mrigridding, sgemm,
spmv, stencil

backprop, bfs, heartwall, hotspot, kmeans,
lavaMD, leukocyte, ludomp, particle_filter,
pathfinder

correlation, dtclassifier, fmclassifier, gbtclas-
sifier, kmeans, logisticregression, lsvc, mlp,
pca, randomforestclassifier, summarizer

SPEC OMP [2]
SPEC Accel [40]
Parboil [41]

Rodinia [42]

MLIib [43]

B. Benchmarks

The benchmarks used in the evaluation are listed in Table I.
These benchmarks come from seven different suites and cover
a variety of application domains.

C. Hardware Specifications

We use two different systems in our evaluation that are
distinguished by their CPUs. Our Intel system uses an Intel
Xeon Platinum 8358 CPU, and our AMD system uses an AMD
EPYC 7543 CPU. Both systems have 512GB of DDR4 RAM,
two sockets, and 32 cores per socket. The benchmarks ran on
an entire node and without any interference. We use the Intel
system for evaluating the first use case and both systems for
evaluating the second use case.

D. Performance Metrics

We use the Linux perf tool [44] to profile applications and
collect the metrics used as input features to our models. The
metrics were selected from distinct categories, including met-
rics related to the operating system, hardware, and software,
ensuring a comprehensive assessment of system performance.
We collect a total of 68 profiling metrics from System 1, listed
in Table II, and 75 profiling metrics from System 2, listed in
Table III.

E. Visualization and Analysis of Performance Distributions

Throughout the evaluation, we represent performance as
distributions measured from 1,000 repeated executions. We
visualize the distributions as kernel density estimates (KDE),
shown as smooth curves, offering a continuous representation
of the data distribution. This visualization allows for a de-
tailed examination of the characteristics of each benchmark,
including central tendency, spread, and skew.

When evaluating the accuracy of a predicted distribution,
we use the Kolmogorov-Smirnov (KS) [45] divergence test to
assess the goodness of fit and quantify the agreement between
the observed and predicted distributions. A value of 0 for the
KS test indicates a perfect match, and as the value increases
up to a maximum of 1, the match decreases.

TABLE II
PROFILING METRICS COLLECTED FOR THE INTEL CPU SYSTEM

TABLE III
PROFILING METRICS COLLECTED FOR AMD CPU SYSTEM

V. EVALUATION

In this section, we motivate the need to predict variability by
showing its occurrence across our benchmarks (Section V-A).
We then evaluate how accurately variability can be predicted
for each of our two use cases: predicting from a few runs
on the same system (Section V-B), and predicting from a
measured distribution on a different system (Section V-C).
For each use case, we evaluate the accuracy of prediction
for different representations of the predicted distribution and
different choice of models. We also show examples of the pre-
dicted distributions to get more intuition about their accuracy.

A. Performance Variability in Benchmarks

Figure 3 shows the distribution of the relative execution
time of all the benchmarks on the Intel system. The diversity
in the shapes of the performance distributions demonstrates
how variable performance can be, both within and across
applications, even on the same hardware. This observation
reiterates that performance cannot be accurately represented
by a single-point summary because that could fail to capture
important features of the distribution such has how wide or
narrow it is, its modes, and if it has a tail. It emphasizes the
importance of treating performance as a distribution, and the
need for predicting performance distributions for preliminary
performance analysis.

1D Metric 1D Metric 1D Metric 1D Metric
0 branch-instructions 34 mem_inst_retired.all_loads (1) bfﬁ]‘anh’i}‘:StWC‘ions ;g bp,le,btlT;,co]rrecl
Y H H ranch-misses pﬁ[)_T1¢
é brgnch misses 35 mem_Amst_reFlred‘all_stores 5 cachomisses 0 opTT_1Tb_miss_T2_Tb_hit
us-cycles 36 mem_inst_retired.lock_loads 3 ache-reh - 0 o 11
. . cache-references p_I1_tlb_miss_I2_tIb_miss
3 cache-misses 37 branch-load-misses 4 cpu-cycles 42 ic_fetch_stall.ic_stall_any
4 cache-references 38 branch-loads 5 instructions 43 ic_tag_hit_miss.instruction_cache_hit
5 cpu-cycles 39 dTLB-load-misses 6 stalled-cycles-backend 44 ic_tag_hit_miss.instruction_cache_miss
6 instructions 40 dTLB-loads 7 stalled-cycles-frontend 45 op_cache_hit_miss.all_op_cache_accesses
7 ref-cycles 1 dTLB-store-misses 8 alignment-faults 46 fp_ret_sse_avx_ops.all
— - - . - 9 bpf-output 47 fpu_pipe_assignment.total
8 alignment-faults 42 - dTLB—stor.es 10 cgroll)xp-sw[i)tches 48 plljc):lz{)tafcacl%efﬁllsfall
9 bpf—output 43 ITLB_load_m}sses 11 context-switches 49 | T1_data_cache_fills_from_external_ccx_cache
10 cgroup-switches 44 node-load-misses 2 cpu-clock 50 11_data_cache_fills_from_memory
11 context-switches 45 node-loads 3 cpu-migrations 51 [1_data_cache_fills_from_remote_node
12 cpu-clock 46 node-store-misses 4 emulation-faults 52 | 1_data_cache_fills_from_within_same_ccx
13 cpu-migrations 47 node-stores 15 major-faults 53 11_dtb_misses
14 emulation-faults 73 mem-loads 16 minor-faults 54 12_cache_accesses_from_dc_misses
- 17 age-faults 55 12_cache_accesses_from_ic_misses
15 m.aJ or-faults 49 mem-stores 18 [:asgk-clock 56 12_cache_hits_from_dc_misses
16 minor-faults 50 S_IOts 19 duration_time 57 12_cache_hits_from_ic_misses
17 page-faults 51 assists.fp 20 | LI-dcache-load-misses 58 12_cache_hits_from_I2_hwpf
18 task-clock 52 cycle_activity.stalls_I3_miss 21 L1-dcache-Toads 59 12_cache_misses_from_dc_misses
19 duration_time 53 assists.any 22 L1-dcache-prefetches 60 12_cache_misses_from_ic_miss
20 | LlI-dcache-load-misses 54 | topdown.backend_bound_slots 23 | Ll-icache-load-misses 61 12_dtlb_misses
21 L1-dcache-loads 55 br_inst_retired.all_branches 2 LI-icache-loads 62 I2_itlh_misses
- . 25 branch-load-misses 63 macro_ops_retired
22 L1-dcache-stores 56 br_misp_retired.all_branches o branch-loads T sse_avx stalls
23 11d.replacement 57 cpu_clk_unhalted.distributed 77 JTLB-load-misses &5 T3_cache_accesses
24 L1-icache-load-misses 58 cycle_activity.stalls_total 28 dTLB-Toads 66 13_misses
25 12_lines_in.all 59 inst_retired.any 29 1TLB-load-misses 67 Is_sw_pf_dc_fills.mem_io_local
26 12_rgsts.all_demand_miss 60 Isd.uops 30 iTLB-loads 68 Is_sw_pf_dc_fills.mem_io_remote
27 12_rgsts.all_rfo 61 resource_stalls.sb 31 branch-instrluctions 69 lsfhwfpffdcfﬁlls.memfioflocal
28 12_trans.12_wb 62 resource_stalls.scoreboard Z% branhc h-misses ;(]) lsfhwfpffdlcf'ﬁlis}mke m_lo_remote
29 LLC-load-misses 63 dtlb_Toad_misses.stIb_hit 3 o A - I Tibs_Fushed
30 LLC-loads 64 dtlb_store_misses.stlb_hit 75 cpu-cycles 73 nstructions
31 LLC-store-misses 65 itlb_misses.stlb_hit 36 | stalled-cycles-backend 74 bp_I1_btb_correct
32 LLC-stores 66 unc_cha_tor_inserts.io_hit 37 | stalled-cycles-frontend
33 longest_lat_cache.miss 67 unc_cha_tor_inserts.io_miss

B. Evaluating Use Case #I: Predicting Distributions from a
Few Runs

Figure 4 shows how the KS score of the predicted distribu-
tions varies with the representation of the predicted distribution
and the choice of model for the first use case when ten runs
are used. For each combination of representation and model,
the violin plot shows how the KS score is distributed across
the benchmarks.

1) Distribution representation: We observe from Figure 4
that the representation of the distribution that results in the best
mean KS score is the PearsonRnd representation. The mean
KS score of the PearsonRnd representation for the best choice
of model is 0.241, in contrast with 0.278 and 0.302 for the
Historgram and PyMaxEnt representations, respectively.

2) Choice of model: We observe from Figure 4 that the
choice of model that results in the best mean KS score is the
kNN model. The mean KS score of the kNN model for the best
choice of distribution representation is 0.241, in contrast with
0.247 and 0.248 for the XGBoost and Random Forest models,
respectively, noting that the improvement is more prominent
with a lower number of samples.

3) Number of samples: Figure 6 shows how the KS score
of the predicted distributions varies with the number of runs
(or samples) made from the application that we are making
predictions for. For each number of samples, the violin plot
shows how the KS score is distributed across the benchmarks.
We observe a significant improvement in the KS score when

accel_303 accel_304 accel_353 accel_354 accel_355 accel_356
6 80 60 .
) 2
4 0 20
o
2 20 20 10 o
%4 03 =67 -01 0 O 03 os %) 01 02 o3 04 %4 63 -0z 01 00 01 04 %4 -3 02 =01 00 01 G 03 04 oz w3 o4
acce 359 mllib_correlation " mllib dtclassmer mllib fmclassmer mllib_gbtclassifier
125
100 15 8 2 * 20
75 10 §) 15 20 15
50 4 10 10
5 10
2 2 s s
%4 65 62 01 00 01 02 03 04 U4 03 62 01 00 01 02 05 o4 %04 -3 02 -01 00 01 o4 %04 03 02 01 00 01 3 04 %04 03 62 01 00 01 02 03 04 Uo& 03 02 01 00 01 02 03 04
mllib_kmeans mllib_logisticregression mIIlb Isvc milib mlp mllib_pca mllib_randomforestclassifier
125 o 8 6 20
100
6 4 15
75
o 4 10
2
25 2 5
%4 =03 -02 01 04 03 04 %04 -03 -0z 01 00 01 03 0e %04 -03-02 01 00 01 02 5a %2 02 03 04
milib_summarizer npb ep npb ft
60 s0 w0
15 w -
40
10 30 30
5 20 2 20
10 10
%4 65 -2 0% 00 o1 o4 %4 05 02 01 00 01 02 03 04 %4 035 02 01 00 01 02 03 04 Y04 03 62 01 00 01 o3 04 Y04 03 62 01 00 01 02 03 04 U04 03 02 -1 00 01 02 05 04
npb lu npb_mg npb_sp npb ua parboil_bfs 1o parb0|l_cutcp
0 3 - » 80
30 40
20 30 10 60
2
>~‘ 20 40
10 B
) 10 2
U) % 03 -02 01 00 01 oz 03 04 %a 03 -0z 01 00 01 0z 03 04 o3 0s %403 02 <01 00 01 02 03 04 %4 -03 02 0T 00 01 G2 03 04 %4 -03 -0z 61 D0 01 02 G3 04
C parboil_histo parboil_Ibm parboil mr|gr|dd|ng parboil_sgemm parb0|l spmv parb0|l stencn
5 100
q) n 30 3 20 . 30
2 10 40
R 10 1 5 " 10
%4 65 02 01 00 o1 07 03 04 Uo& 03 62 01 00 01 o4 %@ 05 02 01 00 01 o4 %4 03 02 o1 00 01 02 05 o4 %4 65 02 61 00 01 02 03 04 04 05 02 01 00 01 02 04
parsec_blackscholes parsec_| bodytrack parsec_« canneal parsec_dedup parsec_fluidanimate parsec_f freqmlne
15 25 8 15
3 100 3
10 4 7.5 2 6] 10
5.0 4 .
® 2 25 ' 2
%463 -6z 61 08 01 07 03 o4 %4 63 0701 00 01 T0e %4 63 62 01 00 o 64 %4 0302 -01 00 61 02 03 04 %4 63 G701 00 oI 02 03 G4 %4 63 0201 08 01 02 03 o4
parsec_netdedup parsec streamcluster parsec, swapt|ons rodinia backprop rodinia_bfs rodinia heartwall
B
¢ 15 15 200
3 3
6
150
10 10
2 2 4 100
1 1 2 5 ° 50
%4 55 -02 01 00 o1 02 G4 %4 G5 02 01 00 o1 o4 %04 -5 07 -01 00 01 o4 %04 03 02 -1 00 01 02 05 o4 4 635 02 01 00 01 02 04 %4 05 02 01 00 01 02 03 04
rodlnla_hotspot rodlnla_kmeans rodlnla_lavamd o rodinia_leukocyte rodinia Iudomp rodinia_particlefilter
15
15) @ 1;:
10 0 0 “ 10 60
w 0 » . w©
s 20 20 20
%4 =63 67 1 00 ol 02 3 o4 %4 03 02 61 00 01 G2 03 04 Y& 03 62 61 00 61 Gz 03 04 Y 63 62 01 00 T 02 03 04 %4 63 -0z =01 00 01 02 03 Gs D4 63 -0z 01 0g 01 02 03 04
0 rodinia_pathfinder specomp_358 specomp_362 specomp_367 specomp_372 specomp_376
10 20 125 6
15 10.0-
0.4 8 200 a
6 150 10 e
02 4 100 S 50 2
2 50 25
02 4 -03 -0.2 -0.1 00 01 02 03 04 =04 -03 -0.2 -0.1 00 0.1 04 =04 -03 -02 -0.1 00 01 02 03 04 =04 -03 -0.2 -0.1 20 01 02 03 04 =04 -03 -02 -0.1 00 01 02 04 =04 -03 -0.2 -0.1 DD 01 02 03 04

Fig. 3. Relative execution time density plots for all benchmarks

Relative Time

on the Intel system

wiolin Plot of KS Scores

Model
3 KNN
[XGBoost
10 4 B RandomForests
N J | J L I\ J L
v 06] \ 1 z/ \)\ l
=1
A
v
B
0.4 o . >
-
-
0.2 o
- ud
- -
- -
a \ v \ | | |
T T T T T T T T T
Pearsonrnd Pearsonrnd Pearsonrnd Histogram Histogram Histogram PymaxEntropy PymaxEntropy PymaxEntropy
KMIN XGBoost RandomForests KMN XGBoost RandomForests KMN XGBoost RandomForests

Representation and Model

Fig. 4. KS scores of the predicted distributions for different distribution representations and choice of model (Intel System)

milib_dtclassifier

specomp_376

parsec_streamcluster

accel_359 accel 303

o[ot \ :

°%a 63 nf"‘ 00 01
Relative Time

parboil_mrigridding

A : 1

| Actual ‘ [

1 Actual

Predicted Predicted
s s
a I
s
s
e T e . [e
Relative Time
) accel 304
Actual I | 1 Actual
Predicted

Predicted ‘

i
‘u
o

51 o0 o1 02
Relative Time.

03 o4 04 03 61 00 o1 o2 03 o4 04
Relative Time

61 oo o1
Relative Time

rodinia_heartwall

| Actual |
Predicted

Actual
Predicted

1 Actual
Predicted

|

|

|

| — o /S,
3 o0 a1 s 51 o0 o
Relative Time Relative Time
npb_bt

1 Actual v] [
| Predicted » i

rodinia_ludomp
| 1 Actual

Predicted |

Actual
Predicted

Fig. 5. Overlay of the predicted and actual distributions for selected benchmarks across the KS score spectrum when predicting with ten samples

Violin Plot of KS Scores by Number of Samples - Intel

going from one sample to multiple samples, since using
multiple samples reduces the chances of the single sample

0.8

°
Y

KS Score

being not representative. When using multiple samples, we
observe a steady improvement in the KS score as the number
of samples increases. This result demonstrates that users can
trade off sampling time for prediction accuracy.

4) Examples: As shown in Figures 4 and 6, the KS score
varies significantly across benchmarks for a fixed represen-
tation, model, and number of runs. To get more intuition
about the accuracy of the predicted distributions, Figure 5
shows an overlay of the predicted and actual distributions
for selected benchmarks across the KS score spectrum when
using the PearsonRnd representation, the kNN model, and
predicting using just ten runs on Intel system. We observe
that the overall width of the distribution can be correctly

1 sample

Fig. 6. KS score of the predicted distribution with different numbers of

samples (Intel System)

2 samples

3 samples 5 Samples 10 samples 50 Samples

Number of samples

predicted, including very narrow distributions (e.g., 359, 304,
bt, heartwall), distributions with moderate width (e.g., dt-
classifier, ludomp), and wide distributions (e.g., 303, 376,
mrigridding), not to mention skewed distributions with long
tails (e.g., streamcluster). The existence of multiple modes is

K5 Score

Violin Plot of KS Scores - AMD to Intel

0.6 o

0.4 o

0.3 o

XGBoost
RandomForests

I

)\ 4

T
Pymaxent
RandomForests

T
Pymaxent
XGBoost

T T
Histogram Histogram
XGBoost RandomForests

Representation and Model

T
pearsonrmd

T T T
pearsonmd pearsonrnd Histogram Pymaxent
KMIN XGBoost RandomForests KMN KMN

Fig. 7. KS score of the predicted distribution when collecting data on the AMD system and making predictions for the Intel system

also predicted with reasonable success (e.g., 303, 304, 376, bt,
mrigridding), particularly the relative positions of the modes
and their relative sizes. These results show that although a
performance distribution is not predicted very precisely, a
sufficient amount of correct information about the shape of
the distribution can be predicted from just a few samples.

C. Evaluating Use Case #2: Predicting Distributions for New
Systems

Figure 7 shows how the KS score of the predicted distribu-
tions varies with the representation of the predicted distribution
and the choice of model for the second use case when
collecting data on the AMD system and making predictions for
the Intel system. For each combination of representation and
model, the violin plot shows how the KS score is distributed
across the benchmarks.

1) Distribution representation: We observe from Figure 7
that, similar to the first use case, the representation of the
distribution that results in the best mean KS score is the
PearsonRnd representation. The mean KS score of the Pear-
sonRnd representation for the best choice of model is 0.236,
in contrast with 0.264 and 0.277 for the Histogram and
PyMaxEnt representations, respectively.

2) Choice of model: We observe from Figure 7 that, similar
to the first use case, the choice of model that results in the best
mean KS score is the kNN model. The mean KS score of the
kNN model for the best choice of distribution representation
is 0.236, in contrast with 0.291 and 0.263 for the XGBoost
and Random Forest models, respectively.

3) Direction of prediction: Figure 8 shows the KS score
of the predicted distribution for different benchmarks when
measuring on the AMD system and predicting on the Intel
system, and vice versa. For each case, the violin plot shows
how the KS score is distributed across the benchmarks. It is
interesting that predicting from the AMD system to the Intel

Violin Plot of KS Scores - System to System

\

KS Score
o
w

\
|
\
)
v

From Intel to AMD

From AMD to Intel
Systems

Fig. 8. KS score of the predicted distribution for different system-to-system
predictions

system seems easier overall than the other way around, but
only slightly.

4) Examples: As shown in Figures 7 and 8, the KS score
varies significantly across benchmarks for a fixed representa-
tion, model, and direction. To get more intuition about the
accuracy of the predicted distributions, Figure 9 shows an
overlay of the predicted and actual distributions for selected
benchmarks across the KS score spectrum when using the
PearsonRnd representation, the kNN model, and predicting
from the AMD system to the Intel system. We observe that
predicting the overall width of the distribution is done fairly
well, including very narrow distributions (e.g., is, heartwall,
spmv), distributions with moderate width (e.g., bfs, gbtclassi-
fier, sgemm), and wide distributions (e.g., bodytrack, canneal,
correlation, histo). The existence of multiple modes is also
predicted fairly well (e.g., bfs, canneal, correlation, histo,

parboil_histo parsec_bodytrack parsec_canneal

milib_gbtclassifier rodinia_heartwall

Actual e Actual
Predicted ’ | Predicted

Relative Time : Relative Time Relative Time
milib_correlation rodinia_bfs npb_is

Actual sl [Actual 5
Predicted . Predicted

“
|

| |
sof

63 62 01 00 o1 02 03 o4 04 63 02 ~-01 00 o1 02 03 o4 04 63 62 61 o0 o1
Relative Time. Relative Time Relative Time

oz 03 04 04 3 02

Actual ol Actual Actual
Predicted Predicted Predicted

Relative Time Relative Time
parboil_spmv parboil_sgemm

Actual o Actual o Actual
Predicted 120 Predicted » Predicted

61 o0 o1 02 03 o4 04 03 02 61 00 o1
Relative Time. Relative Time

Fig. 9. Overlay of the predicted and actual distributions for selected benchmarks across the KS score spectrum when predicting from the AMD system to

the Intel system

sgemm), but with mixed success in correctly predicting the
relative positions of the modes (e.g., bfs, canneal, histo, [
sgemm) and their relative sizes (e.g., histo, sgemm). These
results show that although a precise performance distribution

is difficult to predict, a sufficient amount of correct information

about the shape of the distribution can be predicted to be useful [2]
in a preliminary performance analysis for a new system.

VI. CONCLUSION AND FUTURE WORK

The aim of this work is to find out how successfully the [3]
performance distribution of an application on a system can be
predicted by learning from other representative applications.

We considered two use cases for our predictors: predicting

the performance distribution of an application on a system [4]
from a few runs of the application on that system, and
predicting the performance distribution of an application on a
system from a measured distribution on a different system. We
considered different techniques for formulating the prediction
problem as well as different types of prediction models. Our
evaluation shows that, for both cases, the best prediction
results can be achieved when using the k-nearest neighbors
approach to predict the first four moments of the distribution,
then reconstructing the distribution by sampling the Pearson 7]
distribution with the predicted moments.

There are a couple of factors that could limit the generality
of our evaluation and can be improved in our future work. The (8]
first factor is that a prediction model’s accuracy is generally
improved with more training data. Although the number of [9]
benchmarks we have used in our evaluation is not small, it
is still modest and mostly focused on scientific computing [0
and data analytics applications. We expect that increasing the
number and diversity of benchmarks that we train on could
further improve the accuracy of the predicted distributions.

The second limitation is that our evaluation only uses two [11]
CPU systems. We expect that our results can be further
generalized by being demonstrated on a larger number of g
systems, including systems with accelerators such as GPUs

and benchmarks that use those accelerators.

[5]

[6]

REFERENCES

A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman,
and R. Ricci, “Taming performance variability,” in [3th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI). USENIX, Oct. 2018, pp. 409-425. [Online]. Available:
https://www.usenix.org/conference/osdil8/presentation/maricq

M. S. Miiller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg,
R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux er al., “SPEC
OMP2012 — an application benchmark suite for parallel systems using
OpenMP,” in International Workshop on OpenMP. Springer, 2012, pp.
223-236.

T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance
results,” in Proceedings of the international conference for high perfor-
mance computing, networking, storage and analysis (SC). 1EEE/ACM,
Nov. 2015, pp. 1-12.

1. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “The popper convention:
Making reproducible systems evaluation practical,” in International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, Jul. 2017, pp. 1561-1570.

P. Bruel, V. Mittal, D. M. M. Faloutsos, and E. Frachtenberg, “Revisiting
performance evaluation in an age of uncertainty,” in Proceedings of
the 5th Workshop on Education for High Performance Computing
(EduHiPC’23). Goa, India: IEEE, Dec. 2023.

S. Hunold and A. Carpen-Amarie, “Reproducible mpi benchmarking is
still not as easy as you think,” Transactions on Parallel and Distributed
Systems, vol. 27, no. 12, pp. 3617-3630, Mar. 2016.

V. Mittal, P. Bruel, D. Milojicic, and E. Frachtenberg, “Adaptive stop-
ping rule for performance measurements,” in /4th IEEE International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems. Denver, CO: IEEE, Nov. 2023.
G. Kiczales, “Towards a new model of abstraction in software en-
gineering,” in Proceedings of the International Workshop on Object
Orientation in Operating Systems. 1EEE, Oct. 1991, pp. 127-128.

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” SIGPLAN Notices, vol. 49, no. 4, pp. 127-
144, Apr. 2014.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous com-
puting (SHOC) benchmark suite,” in Proceedings of the 3rd workshop
on general-purpose computation on graphics processing units (GPGPU.
ACM, Mar. 2010, pp. 63-74.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” SIGPLAN Notices, vol. 48, no. 4, pp. 77—
88, Apr. 2013.

A. Nassereldine, S. Diab, M. Baydoun, K. Leach, M. Alt, D. Milojicic,
and I. El Hajj, “Predicting the performance-cost trade-off of applications
across multiple systems,” in JEEE/ACM 23rd International Symposium
on Cluster, Cloud and Internet Computing (CCGrid). 1EEE, May 2023,
pp. 216-228.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

L. Bulej, V. Horky, P. Tuma, F. Farquet, and A. Prokopec, ‘“Duet
benchmarking: Improving measurement accuracy in the cloud,” in Pro-
ceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE). ACM, Apr. 2020, pp. 100-107.

S. Eismann, C.-P. Bezemer, W. Shang, D. Okanovi¢, and A. van Hoorn,
“Microservices: A performance tester’s dream or nightmare?” in Pro-
ceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE). ACM, Apr. 2020, pp. 138-149.

J. Scheuner, “Performance evaluation of serverless applications and
infrastructures,” Ph.D. dissertation, 2022.

C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Communications of the ACM, vol. 59, no. 3, pp. 62-69, 2016.
J. Vitek and T. Kalibera, “Repeatability, reproducibility, and rigor in
systems research,” in Proceedings of the Ninth ACM International
Conference on Embedded Software, ser. EMSOFT’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 33-38. [Online].
Available: https://doi.org/10.1145/2038642.2038650

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tima, and A. Iosup,
“Methodological principles for reproducible performance evaluation in
cloud computing,” Transactions on Software Engineering, vol. 47, no. 8,
pp. 1528-1543, Jul. 2019.

D. Beyer, S. Lowe, and P. Wendler, “Reliable benchmarking: require-
ments and solutions,” International Journal on Software Tools for
Technology Transfer, vol. 21, pp. 1-29, Feb. 2019.

A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance
reproducible in modern cloud networks?” in symposium on networked
systems design and implementation (NSDI). ACM, Feb. 2020, pp. 513—
527. [Online]. Available: https://www.usenix.org/system/files/nsdi20-
paper-uta.pdf

A. B. De Oliveira,

S. Fischmeister, A. Diwan, M. Hauswirth,

and P. F. Sweeney, “Why you should care about quantile
regression,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 1, pp. 207-218, 2013. [Online]. Avail-

able: https://uwaterloo.ca/embedded-software-group/sites/ca.embedded-
software-group/files/uploads/files/asplos13-quantreg.pdf

M. Hocko and T. Kalibera, “Reducing performance non-determinism via
cache-aware page allocation strategies,” in Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering.
ACM, 1 2010, pp. 223-234.

T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: That is the question,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). ACM/IEEE, Nov. 2019, pp. 1-30.

D. Nichols, A. Marathe, K. Shoga, T. Gamblin, and A. Bhatele,
“Resource utilization aware job scheduling to mitigate performance vari-
ability,” in International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, Jun. 2022, pp. 335-345.

O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J.
Leung, M. Egele, and A. K. Coskun, “Diagnosing performance
variations in hpc applications using machine learning,” in High
Performance Computing: 32nd International Conference, ISC High
Performance. Springer, Jun. 2017, pp. 355-373. [Online]. Available:
https://www.bu.edu/peaclab/files/2020/01/isc.pdf

G. Mariani, A. Anghel, R. Jongerius, and G. Dittmann, “Predicting
cloud performance for hpc applications: A user-oriented approach,” in
17th International Symposium on Cluster, Cloud and Grid Computing

(CCGRID). IEEE, May 2017, pp. 524-533.
O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman,
M. Yu, and M. Zhang, “CherryPick: Adaptively unearthing

the best cloud configurations for big data analytics,” in [4th
Symposium on Networked Systems Design and Implementation
(NSDI). USENIX, Mar. 2017, pp. 469-482. [Online]. Avail-
able: https://www.usenix.org/system/files/conference/nsdil 7/nsdil 7-
alipourfard.pdf

N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H.
Katz, “Selecting the best v across multiple public clouds: A data-driven
performance modeling approach,” in Proceedings of the Symposium on
Cloud Computing (SOCC). ACM, Sep. 2017, pp. 452-465.

10

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Zhao, D. Duplyakin, R. Ricci, and A. Uta, “Cloud performance
variability prediction,” in Companion of the ACM/SPEC International
Conference on Performance Engineering (ICPE). ACM, Apr. 2021,
pp. 35-40.

T. Saad and G. Ruai, “Pymaxent: A python software for maximum

entropy moment reconstruction,” SoftwareX, vol. 10, p. 100353, 2019.
T. M. Inc., “Matlab (r2022b),” Natick, Massachusetts, United States,
2022. [Online]. Available: https://www.mathworks.com

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del R’10, M. Wiebe, P. Peterson, P. G’erard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357-362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/541586-020-2649-2

T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and Others,
“Scikit-learn: Machine learning in Python,” the Journal of machine
Learning research, vol. 12, pp. 2825-2830, 2011.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261-272, 2020.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber et al., “The NAS parallel benchmarks summary and
preliminary results,” in Supercomputing’91: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing. 1EEE, 1991, pp. 158-165.
X. Zhan, Y. Bao, C. Bienia, and K. Li, “PARSEC3.0: A multicore bench-
mark suite with network stacks and SPLASH-2X,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 5, pp. 1-16, 2017.

G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu et al.,
“SPEC ACCEL: A standard application suite for measuring hardware
accelerator performance,” in International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems. Springer, 2014, pp. 46-67.

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, p. 27,
2012.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC). 1IEEE, 2009, pp. 44-54.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “MLIib: Machine learning
in Apache Spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235-1241, 2016.

A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1-42.

T. B. Arnold and J. W. Emerson, “The r journal: Nonparametric
goodness-of-fit tests for discrete null distributions,” The R Journal,
vol. 3, pp. 34-39, 2011, https://doi.org/10.32614/RJ-2011-016.

