Goals

Scalable, lightweight and fast resource-management:

- Resource Allocation

- Job-launching

- Cluster-wide synchronization and context-switching
Increase the usability of a cluster:

- Checkpointing and fault-tolerance

- Improved system utilization

- Improved system responsiveness
Testbed for current and new scheduling algorithms.

Orders of magnitude faster than existing production systems
(ASCI Q at LANL, C-Plant at Sandia) and the best published results.

Total run time - MPL (s)

STORM employs several innovative mechanisms to enable
extremely fast job launching, even on thousands of nodes:
- use of hardware collective communications to multicast binary and data files.
- I/O-bypass mechanism to transmit the files directly by the NICs,

without CPU intervention.
Figure 1 shows measured results for job launching on
a 256-processor AlphaServer ES40 cluster at LANL (134th in the top500 list).
Results are shown for three binary image sizes and are split into
the time to send the binary file from the file server to all the compute nodes,
and the time to actually execute it.

Figure1

| Execute4 MB' | Execute 8 MB| B Execute 12 MB
B Send 4 MB B Send 8§ MB B Send 12 MB

150

Time (ms)

r
R
G
c
B
s

rsh (measured)

rsh (t=0.934n+ 1.266)
RMS (measured)

RMS (r=0.077n + 1.092)
GLUnix (measured)

GLUnix (= 0.012n + 0.228)
Cplant (measured)

Cplant (r=1.3791gn + 6.177)
BProc, measured

BProc, (r=0.4131gn - 0.084)
STORM (measured)
STORM (modeled; see text)

= 16 64

256

8 32 128 512
Nodes

IK

2K

4K

16K
8K

STORM's launch times are orders of magnitude better

than other production and research systems.
To compare STORM with other systems, we gathered results from the literature,
and projected how well each system would scale with the number of nodes.

Figure 2 shows the measured and predicted launch times
of a 12MB executable for up to 16,384 nodes.

We used a very detailed model to predict STORM's launch time,
which remains well under a second even for 16K nodes.

4812 4812 4812 4812 4812 4812 4812 4812 4 812
1 2 } 8 16 32 64 128 256

Processors

Resource Management

Figure 3 STORM implements several job scheduling algorithms,

including batch scheduling with back-filling and gang scheduling.

priority program, or just run several parallel jobs concurrently for

improved responsiveness. However, gang-scheduling is not widely used,
partly because the overhead of context-switching an entire parallel job

can be prohibitive. We implement a global context-switch in STORM
that uses efficient communication primitives to make the entire operation

extremely lightweight.

Table 1

: , , Resource Manager
Gang scheduling enables the system to switch a program in favor of a higher RMS

SCore-D
STORM

Minimal feasible quantum
30,000 ms on 15 nodes
100 ms on 64 nodes
2 ms on 64 nodes

How well this compare to other systems?

Table 1 shows the minimal value of usable context-switch

quanta of STORM, RMS and Score-D.

Figure 3 shows the effect of using different time-quanta values when running two copies of a job concurrently.

We consider a synthetic compute-bound job and SWEEP3D, a real LANL kernel.

The overhead of context-switching only appears when using time quanta of less than 2ms.
| | | In fact, Figure 3 shows that STORM can perform a global context-switch with similar frequency and
10 100 1000 10000 cfficiency of that of a local-node, enabling interactive responsiveness even in a large cluster.

Time quantum (ms)

