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Abstract

The efficient implementationof collective communica-
tion patternsin a parallel machine is a challenging de-
signeffort, that requiresthesolutionof manyproblems.In
this paper we presentan in-depthdescriptionof how the
Quadricsnetworksupportsboth hardware- and software-
basedcollectives.We describethemainfeaturesof thetwo
building blocksof thisnetwork,a networkinterfacethatcan
performzero-copyuser-level communicationand a worm-
holeroutingswitch. Wealsofocusour attentionontherout-
ing andflowcontrol algorithms,deadlockavoidanceandon
howtheprocessingnodesareintegratedin a global,virtual
sharedmemory.

Experimentalresultsconductedon64-nodeAlphaServer
cluster indicate that the time to completethe hardware-
basedbarrier synchronizationon the wholenetworkis as
low as6 � s, with verygoodscalability. Goodlatencyand
scalability are also achievedwith the software-basedsyn-
chronization, which takes about 15 � s. With the broad-
cast,similar performanceis achievedby thehardware-and
software-basedimplementations,which can deliver mes-
sagesof up to 256 bytesin 13 � s and can get a sustained
asymptoticbandwidthof 288Mbytes/seconall thenodes.

Thehardware-basedbarrier is almostinsensitiveto the
networkcongestion,with 93%of thesynchronizationstak-
ing less than 20 � s when the network is floodedwith a
backgroundtraffic of unicastmessages.On theotherhand,
the software-basedimplementationsuffers from a signifi-
cant performancedegradation. With high load the hard-
warebroadcastmaintainsa reasonablygoodlatency, deliv-
ering messages up to 2KB in 200 � s, while the software
broadcastsuffers from slightly higher latenciesinherited
fromthesynchronizationmechanism.Bothbroadcastalgo-
rithms experiencea significativeperformancedegradation
of thesustainedbandwidthwith largemessages.

�
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1 Intr oduction

Many scientific applicationsexhibit the needof com-
municationpatternswhich involve global datamovement
andglobalcontrol [5]. Barriersynchronization,broadcast,
gather, scatter, reduceandtotal exchangearetypical exam-
plesof collectivecommunicationpatterns.

Hardware or software supportfor multicastcommuni-
cationcan substantiallyimprove the performanceand the
resourceutilization of a parallelcomputer. Softwareover-
headaccountsfor a high percentageof thecommunication
latency, andreplacingseveralpoint-to-pointprimitiveswith
a singlemulticastoperationmaysubstantiallydecreasethe
communicationlatency. Furthermore,whena nodesends
the samemessagetowards several destinations,someof
thesereplicatedmessagesmay traversethe samecommu-
nicationchannels,generatingmoretraffic thanneeded.

A commonnetwork designtrendis to placeacommuni-
cationprocessorin thenetwork interface[2]. Thisprocessor
can quickly handleincoming messagesand perform sim-
plecomputationswithout interactingwith thehostnode[3].
Thecloseintegrationof thesenetwork processorswith the
capabilityof performingmulticastcommunicationis likely
to play an importantrole in the nearfuture. In fact, the
multicastcanbeenhancedto performsometypeof active-
message[16] computationon the setof destinations.This
createstheopportunityof executingsystem-leveloperations
to enhancefault-tolerance,for exampleto checkthestatus
of the processingnodes,performdistributedalgorithmsto
balancethe load,or to synchronizethe local clocks. More
generally, thesemechanismscan help to integratethe re-
sourcesin aparallelmachine,asif they wereasingleseam-
lesssystem.

Hardwaresupportfor multicastcommunicationrequires
many functionalities, that are dependenton the network
topology, the routing algorithmandthe flow control strat-
egy. For example,in awormholenetwork,switchesmustbe
capableof forwardingflits from oneinput channelto mul-
tiple outputchannelsat thesametime in a tree-like fashion



[14]. Unfortunately, thesetree-basedalgorithmscansuffer
from blockingproblemsin thepresenceof congestion[15].
Also, the packetsmustbe ableto encodethe setof desti-
nationsin an easy-to-decode,compactmanner, in orderto
reducethepacketsizeandto guaranteefastroutingtimesin
theswitches.

Softwaremulticasts,basedonunicastmessages,aresim-
pler to implement,do not requirededicatedhardwareand
arenotconstrainedby thenetwork topologyandroutingal-
gorithms,but they canbe muchslower than the hardware
ones.

In this paperwe analyzein depthhow hardware- and
software-basedmulticastsaredesignedandimplementedin
theQuadricsnetwork (QsNET).

Thepaperis logically dividedinto two parts.In thefirst
part we analyzethe relevant designissuesof the network.
Thelist includesthemaincharacteristicsof thenetwork in-
terface,the communicationlibraries,how local memories
are integratedin a global sharedmemory, the topologyof
theinterconnectionnetwork, theroutingalgorithm,andthe
link-level andend-to-endflow controlalgorithms.This ini-
tial part introducesthemechanismsat thebaseof thehard-
wareandsoftwaremulticastprimitivesthat,ontheirturnare
at thebaseof moresophisticatedcollectivecommunication
patternsasbroadcasts,barriers,scatter, gather, reduce,etc.

In thesecondpartwe provide anextensive performance
evaluationof two user-level collective communicationpat-
terns,barrierandbroadcast,implementedusingbothhard-
ware and software multicast algorithms. One important
contribution of this paperis the performanceevaluationof
thesealgorithmsundernetwork congestion.

The rest of this paper is organizedas follows. Sec-
tion 2 providesanoverview of theQsNEThardwarebuild-
ing blocks and their collective communicationcapabili-
ties. Section3 discussesthe hierarchyof communication
libraries,while Section4 givesa detaileddescriptionof the
main collective communicationservices. The experimen-
tal methodologyis describedin Section5 and Section6
presentstheexperimentalresultsandperformanceanalysis.
Finally, in Section7, someconclusionsaredrawn.

2 The QsNET

The QsNET is basedon two building blocks, a pro-
grammablenetwork interfacecalled Elan [12] anda low-
latency high-bandwidthcommunicationswitchcalledElite
[13]. Elitescanbeinterconnectedin a fat-treetopology[7].
Thenetwork hasseveral layersof communicationlibraries
which provide trade-offs betweenperformanceandeaseof
use.Otherimportantfeaturesarehardwaresupportfor col-
lectivecommunicationpatternsandfault-tolerance.
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Figure 1. ElanFunctionalUnits

2.1 Elan

TheElan1 network interfacelinks thehigh-performance,
multi-stageQuadricsnetwork to aprocessingnodecontain-
ing oneor moreCPUs. In addition to generatingandac-
ceptingpacketsto andfrom thenetwork, theElanalsopro-
videssubstantiallocalprocessingpowerto implementhigh-
level message-passingprotocolssuchasMPI. The internal
functionalstructureof theElan,shown in Figure1, centers
aroundtwo primaryprocessingengines:themicrocodepro-
cessorandthethreadprocessor.

The 32-bit microcodeprocessorsupportsfour separate
threadsof execution,whereeachthreadcanindependently
issuepipelinedmemoryrequeststo thememorysystem.Up
to eightrequestscanbeoutstandingat any giventime. The
schedulingfor the microcodeprocessoris extraordinarily
lightweight,enablinga threadto wake up, schedulea new
memoryaccesson theresultof a previousmemoryaccess,
andgo backto sleepin asfew astwo system-clockcycles.

Thefour microcodethreadsaredescribedbelow: (1) in-
putterthread:Handlesinput transactionsfrom thenetwork.
(2) DMA thread: GeneratesDMA packetsto be written to
thenetwork, prioritizesoutstandingDMAs, andtime-slices
largeDMAs sothatsmallDMAs arenotadverselyblocked.
(3) processor-scheduling thread: Prioritizes and controls
theschedulinganddeschedulingof thethreadprocessor. (4)
command-processorthread: Handlesoperationsrequested
by thehostprocessorat userlevel.

Thethreadprocessoris a 32-bit RISCprocessorusedto
aid the implementationof higher-level messaginglibraries
without explicit interventionfrom the main CPU. In order
to bettersupportthis implementation,thethreadprocessor’s
instructionsetwasaugmentedwith extra instructionsthat

1This paperrefersto theElan3versionof theElan. We will useElan
andElan3interchangeablythroughoutthepaper.



constructnetwork packets, manipulateevents, efficiently
schedulethreads,andblocksaveandrestoreathread’sstate
whenscheduling.

2.2 Elite

The other building block of the QsNET is the Elite
switch. The Elite provides the following features: (1) 8
bidirectionallinks supportingtwo virtual channelsin each
direction,(2) aninternal �����	� full crossbarswitch2, (3) a
nominaltransmissionbandwidthof 400MB/s on eachlink
direction and a flow throughlatency of 
�� ns, (4) packet
errordetectionandrecovery, with routinganddatatransac-
tionsCRCprotected,(5) two priority levelscombinedwith
anagingmechanismto ensurea fair delivery of packetsin
thesamepriority level, (6) hardwaresupportfor broadcasts,
(7) andadaptiverouting.

TheElite switchesareinterconnectedin aquaternaryfat-
tree topology, which belongsto the moregeneralclassof
the 
 -ary � -trees[9] [8]. A quaternaryfat-treeof dimen-
sion � is composedof ��� processingnodesand � � �������
switchesinterconnectedasa deltanetwork, andcanbere-
cursively build by connecting4 quaternaryfat treesof di-
mension����� .

Quaternaryfat treesof dimension1, 2 and3 areshown
in Figure2.

a)

b)

c)

Figure 2. � -ary � -treesof dimension1, 2 and3

2Thecrossbarhastwo input portsfor eachinput link, to accommodate
thetwo virtual channels.

2.2.1 Packet Routing and Flow Control

Eachuser- and system-level messageis chunked in a se-
quenceof packets by the Elan. An Elan packet contains
threemaincomponents.Thepacketstartswith the(1) rout-
ing information,thatdetermineshow thepacket will reach
thedestination.This informationis followedby (2) oneor
moretransactionsconsistingof someheaderinformation,a
remotememoryaddress,thecontext identifieranda chunk
of data,which canbe up to 64 bytesin the currentimple-
mentation.Thepacket is terminatedby (3) anendof packet
(EOP)token,asshown in Figure3.

transaction type

context

memory address

data

CRC

CRC

routing tags

packet header

route one or more transactions EOP token

Figure 3. Packet TransactionFormat

Transactionsfall into two categories:write block trans-
actionsandnon-writeblock transactions.

The purposeof a write block transactionis to write a
block of datafrom thesourcenodeto thedestinationnode,
using the destinationaddresscontainedin the transaction
immediatelybeforethe data. A DMA operationis imple-
mentedas a sequenceof write block transactions,parti-
tionedinto oneor morepackets(apacketnormallycontains
5 write block transactionsof 64 byteseach,for a total of
320bytesof datapayload).

The non-write block transactionsimplementa family
of relatively low level communicationandsynchronization
primitives. For example,non-writeblock transactionscan
atomicallyperformremotetest-and-writeor fetch-and-add
andreturnthe resultof the remoteoperationto thesource,
andcanbe usedasbuilding blocksfor moresophisticated
distributedalgorithms.

Elite networks aresourcerouted. The routing informa-
tion is attachedto theheaderbeforeinjectingthepacketinto
the network and is composedof a sequenceof Elite link
tags. As the packet moves inside the network, eachElite
removesthefirst routingtagfrom theheader, andforwards
the packet to thenext Elite in the routeor to thefinal des-
tination. Theroutingtagcanidentify eithera singleoutput
link or agroupof adjacentlinks.

Thetransmissionof eachpacketis pipelinedinto thenet-
work usingwormholeswitching.At link level, eachpacket
is partitionedin smallerunitscalledflits (flow controldig-
its) [4] of 16 bits. The headerflit opensa circuit between



sourceanddestination,andthis pathstaysin placeuntil the
destinationsendsan acknowledgementto the source. At
this point, the circuit is closedby sendingan EOPtoken.
It is worth noting thatbothacknowledgmentandEOPcan
betaggedto communicatecontrol information. So,for ex-
ample,thedestinationcannotify thesuccessfulcompletion
of a remotenon-writeblock transactionwithout explicitly
sendinganextrapacket.

Minimal routing betweenany pair of nodescanbe ac-
complishedby sendingthe messageto oneof the nearest
commonancestorsandfrom thereto the destination.That
is, eachpacket experiencestwo routing phases,an adap-
tive ascendingphaseto get to a nearestcommonancestor,
followed by a deterministicdescendingphase. The Elite
switchescan adaptively route a packet picking the least
loadedlink.

2.3 Collective Communication

Packetscanbesentto multiple destinationsusingeither
thehardware multicastcapabilityof thenetwork or a soft-
ware treeimplementedwith point-to-pointcommunication
betweentheElanthreadprocessors.

2.3.1 HardwareMulticast

A multicastpacket canonly take a pre-determinedpath,in
orderto avoid deadlocks.In Figure4 a) it is shown thatthe
top leftmostswitchis chosenasthelogical root for thecol-
lective communication,andevery request,in theascending
phase,mustpassthroughoneof thedottedpathsuntil it gets
to therootswitch. In Figure4 b) wecanseehow amulticast
packetreachestherootnode;themultiplebranchesarethen
propagatedin parallel.If anothercollectivecommunication
is issuedwhile thefirst oneis still in progress,it is serialized
in therootswitch.Thesecondmulticastpacketwill beable
to proceedonly afteranEOPtokencleansthecircuit of the
first communication.All nodesconnectedto the network
arecapableof receiving themulticastpacket,aslongasthe
multicastsetis physicallycontiguous.

For a multicastpacket to be successfullydelivered, a
positiveacknowledgementmustbereceivedfrom all there-
cipientsof the multicastgroup. The Elite switchescom-
bine theacknowledgements,aspioneeredby theNYU Ul-
tracomputer[1] [10], returninga singleoneto the source.
Acknowledgementsarecombinedin away thatthe“worst”
ackwins (a network errorwins over anunsuccessfultrans-
action,which on its turn wins over a successfulone), re-
turninga positive ackonly whenall thepartnersin thecol-
lective communicationcompletethedistributedtransaction
with success.

2.3.2 SoftwareTree

TheElanthreadprocessorcanreceive anincomingpacket,
do somebasicprocessing(suchasan atomicincrementof

c)

b)a)

d)

Figure 4. HardwareMulticast

a variable)andsendoneor morerepliesin few � s, with-
out any interactionwith themainprocessors.Softwarecol-
lectivescanbe implementedusingthecommunicationand
computationcapabilityof theElanthreadprocessor, for ex-
amplemulticasttrees.Softwarecollectivescanbebasedon
treeswith programmablearity, depthandregularity, anddo
not suffer from the limitation that the destinationsetmust
becomposedof adjacentnodes.

3 Programming libraries

The Elan network interfacecan be programmedusing
severalprogramminglibraries[11], asoutlinedin Figure5.
Theselibrariestradespeedwith machineindependenceand
programmability. Startingfrom thebottom,Elan3lib is the
lowestprogramminglevel availablein userspacewhich al-
lows accessto the low level featuresof the Elan3. At this
level,processesin aparalleljob cancommunicatewith each
other throughan abstractionof distributed virtual shared
memory. Eachprocessin a parallel job is allocateda vir-
tual processid (VPID) and can map a portion of its ad-
dressspaceinto the Elan. Theseaddressspaces,taken in
combination,constitutea distributed virtual sharedmem-
ory. Remotememory(i.e., memoryon anothernode)can
beaddressedby a combinationof a VPID anda virtual ad-
dress.SincetheElanhasits own MMU, a processcanse-
lectwhich partof its addressspaceshouldbevisibleacross
the network, determinespecificaccessrights (e.g. write-
or read-only)andselectthesetof potentialcommunication
partners.

Elanlib is a higherlevel layerthat freestheprogrammer
from therevision-dependentdetailsof theElan,andextends
Elan3libwith point-to-point,taggedmessagepassingprim-
itives(calledTaggedMessagePortsor Tports)andsupport
for collective communication.Standardcommunicationli-
brariesassuchMPI-2 [6] or CrayShmemareimplemented



on top of Elanlib.
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Figure 5. Elan3ProgrammingLibrary Hierarchy

3.1 Elan3lib

The Elan3lib library supportsa programmingenviron-
ment wheregroupsof cooperatingprocessescan transfer
datadirectly, while protectingprocessgroupsfrom each
otherin hardware. The communicationtakesplaceat user
level,with nodatacopying,bypassingtheoperatingsystem.
Themainfeaturesof Elan3libare:(1) eventnotification,(2)
thememorymappingandallocationschemeand(3) remote
DMA transfers.

3.1.1 Event Notification

Eventsprovide a generalpurposemechanismfor processes
to synchronizetheir actions. The mechanismcanbe used
by threadsrunningon the Elan and processesrunningon
the main processor. Eventscan be accessedboth locally
andremotely. Thus,processescanbesynchronizedacross
thenetwork, andeventscanbeusedto indicatetheendof a
communicationoperation,suchasacompletionof aremote
DMA. Eventsarestoredin Elanmemory, to guaranteethe
atomicexecutionof thesynchronizationprimitives3.

3.1.2 Memory Mapping and Allocation

The MMU in the Elan can translatebetweenvirtual ad-
dresseswritten in theformatof themainprocessor(for ex-
ample,a 64-bit word, big Endianarchitecturesuchas the
AlphaServer) andvirtual addresseswritten in theElan for-
mat (a 32-bit word, little Endianarchitecture).For a pro-
cessorwith a 32-bit architecture(for exampleanIntel Pen-
tium), a one-to-onemappingis all thatis required.

The MMU tablescan be set up to map a commonre-
gion of virtual memorycalledmemoryallocator heap. The
allocatormapsphysicalpages,of eithermainor Elanmem-
ory into this virtual addressrangeon demand.Thus,using
allocationfunctionsprovidedby the Elan library, portions
of virtual memory(1) canbeallocatedeitherfrom mainor
Elan memory, and(2) the MMUs of both main processor
andElancanbekeptconsistent.

3ThecurrentPCI busimplementationscannotguaranteeatomicexecu-
tion, soit is not possibleto storeeventsin mainmemory.

3.1.3 RemoteDMA

The Elan supportsremoteDMA (Direct Memory Access)
transfersacrossthe network, without any copying, buffer-
ing or operatingsystemintervention. Theprocessthat ini-
tiatesthe DMA fills out a DMA descriptor, which is typi-
cally allocatedon the Elan memoryfor efficiency reasons.
The DMA descriptorcontainsthe VPIDs of both source
anddestination,theamountof data,thesourceanddestina-
tion addresses,two event locations(onefor thesourceand
theotherfor thedestinationprocess)andotherinformation
usedto enhancefault tolerance.

3.2 Elanlib and Tports

Elanlib is a machineindependentlibrary that integrates
the main featuresof Elan3lib with the Tports. Tportspro-
vide basicmechanismsfor point-to-pointmessagepassing.
Senderscanlabeleachmessagewith a tag,thesenderiden-
tity andthe sizeof the message.This is known asthe en-
velope. Receivers can receive their messagesselectively,
filtering themaccordingto theidentity of thesenderand/or
a tag on the envelope. The Tport layer handlescommuni-
cationvia sharedmemoryfor processeson thesamenode.
It is worth noting that theTportsprogramminginterfaceis
verysimilar to MPI.

Elanlib provides supportfor collective communication
operations(thosethat involve a groupof processes).The
mostimportantcollectivecommunicationprimitivesimple-
mentedin Elanlib are: (1) the barriersynchronizationand
(2) thebroadcast.

4 Barrier Synchronization and Broadcast

4.1 Barrier Synchronization

A synchronizationbarrier is a logical point in the con-
trol flow of a parallelprogramat which all processesin a
groupmustarrive beforeany of theprocessesin thegroup
areallowedto proceed.Typically, abarriersynchronization
involvesalogical reduceoperationfollowedby abroadcast.

QsNETimplementstwo differentsynchronizationmech-
anismsin Elanlib, a mixed softwareandhardwarebarrier
calledelan_gsync() anda purely hardwareonecalled
elan_hgsync().

Thealgorithmimplementedwith elan_gsync() uses
abalancedtreeto sendthe’ready’signalto theprocesswith
VPID 0. Eachprocessin the treewaits for ’ready’ signals
from its children, and when it receivesall of them sends
its own signalup to the parentprocess.This phaseof the
barrieris illustratedin Figure6. Whentheroot processre-
ceivesall its ’ready’ signalsit performsa hardwarebroad-
castwhicheithersetsanevent(whichall processesarewait-
ing for) or writesa singleword in a givenmemorylocation
(which all processesarepolling). If the destinationnodes



arenot adjacentthesametreestructureis usedto distribute
thedatausingpoint-to-pointmessages.
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(2)
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Figure 6. First phaseof elan_gsync()for 16 processes.
Eachprocess(1) waits for the ’ready’packet from its chil-
drenand,then(2) sendsits own ’ready’signalto its parent

Whenthe barrieris performedwith elan_hgysnc()
or elan_hgysncEvent() (Figure 7), all processesin
thegroupseta barriersequencenumberin a systemmem-
ory location and wait for a ’ready’ signal (busy polling
on a memorylocationwith elan_hgysnc() or anevent
mechanismwith elan_hgysncEvent()). The process
with VPID 0 (the root node)usesan Elan threadto send
a specialtest-and-setbroadcastpacket. This packet spans
all the processesandchecksif the barrier sequencevalue
in eachprocessmatcheswith its own sequencenumber(it
doesif thecorrespondingprocessreachedthebarrier). All
therepliesarethencombinedby theEliteson thewayback
to the root nodewhich receivesa singleACK token. If all
the nodesare readyan EOPtoken is sentto the group to
setaneventor write a word to wake up theprocesseswait-
ing in the barrier. It hasto be notedthat this mechanism
is completelyintegratedinto thenetwork flow control(Sec-
tion 2.2.1). This givesthe bestfiguresas long asthe pro-
cessesenter the barrier fairly close together, otherwiseit
backsoff exponentially(to stopflooding the network with
broadcasts).

Node iRoot node

init barrier init barrier

update seq #update seq #

wait eventwait event

OK or FAIL

GOOD or BAD

test seq #

Broadcast Transactiontim
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trigger event

repeat if FAIL
if OK

or pollor poll

trigger event
if GOOD

Figure 7. elan_hgsync()BarrierImplementation

4.2 Broadcast

Themaincommunicationprimitiveof theQsNETis the
remoteDMA. A DMA operationtransfersdatabetweenlo-
calandremoteaddressspaces(includingElanmemory).In
additionto providingpoint-to-pointcommunication,DMAs
canalsobeusedto performgroup-wideoperationssuchas
broadcastandfloodDMAs (aflood is similar to abroadcast
but the operationcompletesassoonasany of the destina-
tions acceptsthe DMA). A groupof destinationprocesses
is definedby specifyinga virtual groupidentifier. The ef-
fect of a write broadcastDMA is to copy thedatafrom the
sourceto thedestinationbuffersof all the processesin the
group. The implementationof the broadcastDMAs relies
on all receiving processeshaving the destinationbuffer at
thesamevirtual address,to obtaingoodperformance.

QsNETprovidesbroadcasthardwaresupportthatshould
sendabroadcastmessagein thesametimerequiredto send
a point-to-pointmessage.The network canbe considered
asa treeof Elite switchesthatconnectanarrayof Elannet-
work interfacecards. Broadcastsare propagatedinto the
network by sendinga packet to thetop of thetreeandthen
forwarding the packet to more than one switch output as
the packet is sentdown the tree. Deadlocksmight occur
on theway down whenmultiple broadcastsaresentsimul-
taneously. This situationis avoidedby sendingbroadcast
packetsalwaysto afixedtoptreeswitch,thusserializingall
broadcasts(Section2.3).All theElansconnectedto thenet-
work arecapableof receiving thebroadcastpacket,but the
hardwaremechanismcanonly be usedwith a contiguous
subsetof Elans.

Two different broadcast implementations are pro-
vided by the Elanlib library: elan_bcast() and
elan_hbcast(). Both must be called by all the pro-
cessesin the group involved in the broadcastoperationto
guaranteethat the receivers have allocatedthe buffers by
thetimethetransactionis performedby thesenderprocess.
As a result,thebroadcastis composedof two transactions:
first, a barrier synchronizationand, second,the broadcast
itself. In both implementations,two typesof memoryre-
sourcescanbeused.On the onehanda globaldestination
buffer, which hasthe samevirtual addressin all the pro-
cesses(Elanlib provides specialmemoryallocationfunc-
tions to do that), allows DMA transactionsdirectly from
onesourceto multiple destinations.On the otherhand,if
this memoryallocationis not used,systembuffersareuti-
lizedasintermediatecopy space(thisapproachimpliesone
copy at thesource,andanothercopy at thedestination).

Theelan_bcast() implementationusesa software-
basedsynchronizationfor thefirst phasesimilar to thatuti-
lized by the first phaseof elan_gsync() (Section4.1).
Thesecondphaseis triggeredby aneventsetin thesource
nodeandis doneusingthehardwarebroadcastmechanism
(if all the destinationElansare contiguous)or by means
of a software-basedbroadcast(if the destinationElansare
not). This transactiondistributesthedataandwakesup the



processeswaiting in the barrierperformedduring the first
phase. This implementationprovides betterperformance
thanacall toelan_gsync() (which involvesasoftware-
basedsynchronizationanda broadcast)anda later broad-
castto sendthedata.

The elan_hbcast() primitive calls
elan_bcast() if the hardwarebroadcastmechanismis
not available,for examplewhenthenodesarenot contigu-
ous. If this mechanismis available, it performsa barrier
to synchronizeall the nodes using elan_hgsync()
(Section4.1) and a hardware broadcastto distribute the
data.

TheElanhardwarebroadcastcanonly write to themem-
ory spaceof a singleprocessper nodesincethereis only
a singlecontext specifiedby the virtual processidentifier.
Hence,with multiple processesper node,the only way to
usethe hardwarebroadcastfacility is to broadcastinto an
areaof sharedmemoryandthenget the processesto copy
from there. This hasbeenoptimizedby usinga FIFO like
schemethattriesto overlapthebroadcastwith thecopies.

5 Experimental Framework

The main featuresof the QsNET were testedon a 64-
nodeclusterof CompaqAlphaServerES40s,runningTru64
Unix. EachAlphaServer nodeis equippedwith 4 Alpha
667MHz 21264processors,8GB of SDRAM andtwo 64-
bit, 33MHz PCI I/O buses.The Elan3QM-400cardis at-
tachedto oneof theseandlinks theSMPto aquaternaryfat
treeof dimensionthree,like theoneshown in Figure2 c).

5.1 Unidir ectionalPing

We analyzethe latency and bandwidthof the network
by sendingmessagesof increasingsizes. In orderto iden-
tify different bottlenecks,the communicationbuffers are
placedeitherin main or in Elan memory. The alternatives
includemain memoryto main memoryandElan memory
to Elan memory. Thesebuffers are placedin the desired
typeof memoryusingtheallocationmechanismsprovided
by Elan3lib,asdescribedin Section3.1.

Thelatency is measuredastheelapsedtimebetweenthe
postingof the remoteDMA requestandthenotificationof
thesuccessfulcompletionat thedestination.Theunidirec-
tional ping testsfor MPI are implementedusingmatching
pairsof blockingsendsandreceives.Thesetestsprovide a
performancereferenceto consistentlyanalyzetheresultson
collectivecommunication.

5.2 Collective Communication

The barrier synchronizationand broadcastprimitives
providedby the QsNETsystemsoftwarehave beentested
usingconfigurationsrangingfrom 4 to 64 nodes. Results

havebeenobtainedbyaveragingtheresultsover10000con-
secutive tests.Averagelatency resultsandlatency distribu-
tion arereportedfor the barriersynchronizationtests. For
thebroadcasttestsbandwidthandlatency arereported.

In addition,testswith backgroundtraffic have beenper-
formed to analyzethe behavior of the collective commu-
nicationsundernetwork contention.This backgroundtraf-
fic is generatedby 128processesrunningin 64 nodes(one
senderandonereceiver pernode),with all nodesinjecting
messagesinto the network at maximumload. The goal of
thesetestsis to identify theperformancedegradationexpe-
riencedby thecollectivecommunicationin thepresenceof
congestion.Two differenttraffic patternswereusedto gen-
eratebackgroundtraffic:

, Complement. The node with binary coordinates-
�.���0/

-
�.�213/�454645/

-
�7/

-�8 communicateswith thenode-
�.���0/

-
�.�213/�454645/

-
�7/

-�8 . Thispatternusesall thenet-
work links at thesametime.

, Uniform. Eachnodeselectsrandomlyits destination
for everysingletransaction.

Toguaranteethattheperformancedegradationof thecollec-
tive communicationis only dueto the network contention
andnot to schedulingissues,thebackgroundtraffic genera-
tion andthecollectivecommunicationbenchmarkwererun
in distinctprocessors.

6 Experimental Results

6.1 Unidir ectional Ping

Figure8 a) shows theperformanceof theunidirectional
ping. The peakbandwidthof 335 MB/s is reachedwhen
both sourceanddestinationbuffers areplacedin the Elan
memory. The maximumamountof datapayloadthat can
be sentby the currentElan implementationin a packet is
320bytes,partitionedin five low-level write-blocktransac-
tionsof 64bytes.For thispacket format,theoverheadis 58
bytes,for themessageheader, CRCs,routinginfo, etc.This
impliesthatthedeliveredpeakbandwidthis approximately
396 MB/s, or 99% of the nominalbandwidth(400 MB/s).
Theasymptoticbandwidthfor mainmemoryto mainmem-
ory communicationis only 200MB/sfor both Elanlib and
MPI. Theseresultsalsoshow thatthePCI interfacerunning
at33MHz is thebottleneckfor this typeof communication.

Figure8 b) shows the latency in the range 9 : 45464 ��;=<?> .
With Elan3libthebasiclatency for 0-bytemessagesis only@
4
@ � s andis almostconstantat

@
4 �A� s for messagesup to

�B� bytes,becausethesemessagescanbepackedasa single
write-blocktransaction.We notean increasein thelatency
at MPI level, comparedto thelatency at theElan3lib level,
from approximately

@ � s to � 4 �C� s. While at Elan3lib level
the latency is mostly hardware,MPI needsto run a thread
in the Elan microprocessorin orderto matchthe message



tags: this introducestheextra overheadresponsiblefor the
higherlatency.
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Figure 8. UnidirectionalPing

6.2 Collective Communications

6.2.1 Barrier Synchronization

Figure 9 shows the averagetime required to perform a
barrier synchronizationin an empty network. Resultsfor
the threeElanlib primitives (Section4.1) are shown ver-
susthe numberof nodes. We can seethat the hardware-
basedimplementationsof the barrier (elan_hgsync()
and elan_hgsyncEvent()) provide the best results
when compared to the software-basedimplementation
(elan_gsync()), both in absoluteperformanceand in
scalability. The latency of the software-basedimplemen-
tation grows as the logarithm of the number of nodes
(approximately2.5� s eachtime the numberof nodesis
quadrupled). In this case the average latency to syn-

4

6

8

10

12

14

16

4 16 64

La
te

nc
y 

(E µs
)

Nodes

Barrier Test - 1 CPU per node

elan_gsync()
elan_hgsync()
elan_hgsyncEvent()

Figure 9. BarrierSynchronization

chronize 64 nodes is 14.8� s. On the other hand, the
elan_hgsync() barrierprovidesan averagelatency of
5� sbelow 16nodesand5.5� sand6� sfor 32and64nodes,
respectively. Theelan_hgsyncEvent() synchroniza-
tion giveslatencieson average0.7� s above thoseobtained
with elan_hgsync(). This is dueto theadditionaldelay
associatedwith theeventnotification. In boththreadbased
barriers,the latency increaseabove 16 nodesis probably
dueto schedulingissueson theOS(Tru64Unix).

Thebehavior of thebarriersynchronizationhasbeenan-
alyzedby performingtestswith uniform andcomplement
backgroundtraffic. Theresultsdepictedin Figure10 show
thattheperformanceof thevariousbarrierimplementations
is affectedby the network traffic with higher degradation
when uniform backgroundtraffic, which produceshigher
network contention,is used(note that the latency scaleis
logarithmic in this figure). In fact, with complementtraf-
fic there is always one virtual channelavailable in each
link. The software barrier is significantly affectedby the
backgroundtraffic, the slowdown is 40 in the worst case
of uniform traffic and64 nodes. On the otherhand,there
is little impacton the hardwarebarriers,whoselatency is
only doubled.The scalabilityis alsoaffectedby theback-
groundtraffic, with no significantdifferenceswith uniform
traffic for the threeimplementationstested. In this case,
the latency increasewith the numberof nodesis tripled;
for example, the elan_gsync()latency increases54%
(when the numberof nodesvariesfrom 4 to 64) with no
backgroundtraffic and160%with uniform traffic while the
elan_hgsync()latency increases29%and86%,respec-
tively. With complementtraffic the performanceof the
software-basedbarrieris similar (anincreaseof 150%in la-
tency) while the hardware-basedimplementationsprovide
a betterscalability (an increaseof 40%). The software-
basedbarrier latency scalability is shown to be moresen-
sitive to complementbackgroundtraffic thanthehardware-
basedbarriers.

Figure 11 shows the latency distribution of



elan_hgsync() in a 64-node configuration for ex-
perimentswith 10000consecutive tests. Only 2% of the
operationstake more than 20� s and 94% less than 9� s
whenthereis no backgroundtraffic. In themostcongested
case,with uniform backgroundtraffic, the averagelatency
for 64 nodesis 14.8� s,with morethan93%of thebarriers
taking lessthan20� s. Similar resultswereobtainedwith
elan_hgsyncEvent().

The latency distribution for the software-basedimple-
mentationof the barrier synchronizationis shown in Fig-
ure 12. Only 1% of the barrierstake more than 30� s in
anemptynetwork. In the presenceof network contention,
elan_gsync() suffers a significantdegradationin per-
formance. In the worst case(uniform backgroundtraffic)
anaveragelatency of 595� sis obtainedand93%of thesyn-
chronizationscompletewith latenciesbelow 605� s.
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6.2.2 Broadcast

Figure 13 shows the results obtained with broadcast
over 64 nodesusing both algorithmssupportedby Elan-
lib (Section4.2) with buffers globally allocatedin main
and Elan memory, that is, with the same virtual ad-
dress in all processes. The best performanceis ob-
tained, as expected, with Elan memory. In this case
the measuredbandwidthfor 1MB messagesis 288MB/s
for both elan_bcast() and elan_hbcast(). The
elan_hbcast() primitive provides lower latencies(a
differenceof 3.5� s)becauseit usesthehardware-basedsyn-
chronizationratherthan the software-basedone. For this
reasonthebandwidthfor shortermessagesis slightly higher
with elan_hbcast(). For messagesup to 256 bytes
thelatency is constantandapproximatelyequalto 13� s for
elan_hbcast() and16.5� s for elan_bcast(). This
is dueto the fact that messagesshorterthan320 bytesare
sentusinga singlepacket [12].

Bandwidthandlatency versusthe numberof nodesfor
256KB messagesaredepictedin Figure 14. Both perfor-
mancemetricsareinsensitive to thenumberof nodeswhen
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Figure 13. Broadcast

thebuffersareallocatedin mainmemory, becausethePCI
bus is thebottleneckin this case.On theotherhand,when
Elan memory is used,a performancedegradationoccurs
whenthenumberof nodesincreasesabove16(8%decrease
in bandwidthand12%increasein latency). A similar, albeit
lower, effect is experiencedwhenthenumberof nodesis in-
creasedabove4 (1%differencesin bandwidthandlatency).

In the presenceof network contention(Figure 15) the
broadcastperformancedecreasessignificantly. The maxi-
mumbandwidthis obtainedby usingmainmemory. This is
causedby thejobrunningin thebackgroundwhichallocates
its communicationbuffersin Elanmemory. Thisconfigura-
tion gives36MB/swith complementbackgroundtraffic and
24MB/s with uniform backgroundtraffic using1MB mes-
sages. Although both broadcastimplementationsprovide
approximatelythe samemaximumbandwidth(with 1MB
messages),theelan_hbcast() primitive obtainsbetter
performancefor smallermessagesdueto thehardwaresyn-
chronizationmechanism(Figures15 (b) and(d)), which is
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Figure 14. BroadcastScalability

lesssensitive to additionalnetwork traffic (Section6.2.1).
In termsof scalability (Figure16) the four alternatives

suffer from thesameperformancedegradationasthenum-
ber of nodesincreases.This effect slows down aswe in-
creasein thenumberof nodes,suggestingthatnoadditional
significantperformancedecreaseshouldbeexperiencedby
networkslargerthan64nodes.

7 Conclusion

In this paper, we presentedan in-depthdescriptionof
the Quadricsinterconnectionnetwork (QsNET) with spe-
cial emphasison thesupportfor collective communication
andits integrationwith thesystemsoftware.Wefocusedon
two basiccommunicationpatterns:barriersynchronization
and broadcast. An experimentalevaluationof hardware-
basedandsoftware-basedimplementationsof theseservices
hasbeenperformedon a 64-nodeAlphaServercluster.
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Figure 15. Broadcastwith Contention

Our experimentsshow that the time to complete a
hardware-basedbarriersynchronizationon thewholesetof
nodesis as low as6� s, with very goodscalability for the
network configurationstested.Goodlatency andscalability
arealsoachievedwith thesoftware-basedsynchronization,
whichcompletesin 15� s.

Anotherimportantcontributionof thispaperis theanaly-
sisof thecollectivesin thepresenceof network contention.
In this case,the averagelatency for the hardware barrier
is 13� s, with 93%of thesynchronizationstaking lessthan
20� s. On the otherhand,the software-basedimplementa-
tion is shown to suffer a significantperformancedegrada-
tion. From a practicalpoint of view the hardware-based
barriercanbeconsideredinsensitive to network contention.

With the broadcast,similar resultshave beenobtained
for the hardware-basedandthe software-basedimplemen-
tationsin the absenceof additionalnetwork traffic. These
resultsshow that without contentionthe two algorithms
can be usedinterchangeably. The broadcastlatency for
messagesup to 256 bytes is 13� s and the bandwidthis
288MB/s. Contentiontests,donein the presenceof high
network load, show that the broadcastmaintainsreason-
ablygoodperformance(i.e. lessthan200� sto delivermes-

sagesup to 2KB). In this casethe hardware-basedbroad-
cast outperformsthe software-basedbroadcastthanks to
its hardware-basedsynchronizationmechanism. Overall,
our analysisshows thepotentialof theinterconnectto effi-
ciently supportlarge-scalecollective communication,even
in thepresenceof highnetwork contention.As futurework,
we plan to addressthe problemof the serializationof the
hardwarebroadcastsontherootnodeandto studyhow col-
lective communicationcan be further integratedwith the
network processor.
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