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Since the dawn of computing, the established prac-
tice for performance evaluation has been to repre-
sent performance as a variable for some metric and 
measure or estimate it as accurately as possible. 

However, computer hardware and software have evolved 
in ways that render their performance a constantly varying 
value, which means that any single performance summary 
may no longer be representative of the system. Instead, 

performance is now often behaving 
like a complex random variable, and 
should therefore be handled as such, 
with the appropriate statistical tools.

Obviously, there is nothing novel 
about the requirement to handle 
complex distributions with appro-
priate statistical tools. For example, 
biologists, psychologists, clinical re-
searchers, and social scientists have 
been managing uncertainty in their 
experiments and observations for 
decades. What’s changed is that 
computer performance has evolved 
from quantities that were relatively 
easy to measure, model, and repro-
duce, to complex random variables 

with ostensibly nondeterministic or irreproducible behav-
iors. In this column, we review the confluence of recent fac-
tors that are changing performance evaluation, illustrate 
why the “old ways” of performance evaluation are no longer 
good enough, describe the evolution of performance evalua-
tion in reaction to these changes, and predict some possible 
directions for the future of performance evaluation.

SOURCES OF PERFORMANCE VARIABILITY
There are many reasons why the performance of modern 
computer systems is growing ever more variable. Let us 
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briefly review some of them, going 
from the bottom up.

First, modern computer hardware 
has become extremely complex,3 with 
optimizations such as multicore pro-
cessors, speculative execution, caching, 
dynamic voltage and frequency con-
trol, symmetric multithreading, and 
branch prediction, itself often unpre-
dictable and proprietary.5 Hardware is 
also growing more heterogeneous, both 
within chips and across chips, using ac-
celerators such as GPUs. This heteroge-
neity combines different architectures, 
leading to multiple performance pro-
files that depend on the dynamic bal-
ance between the components.

System software and middleware 
also contribute to performance vari-
ability. The BIOS includes idiosyn-
cratic optimizations and power- savings 
tradeoffs; the operating system can 
make seemingly arbitrary schedul-
ing decisions in space and time with 
significant performance effects; and 
even the language runtime can appear 
spurious when making adaptive deci-
sions, such as garbage collection and 
just-in-time optimizations.4,12

Similarly, the application software’s 
performance can vary by factors such 
as changes in inputs, configuration pa-
rameters, and randomized heuristics 
and simulations.14 In particular, many 
applications now rely on concurrency 
to satisfy their growing computational 
needs. The increasing use of parallel, 
distributed, and more recently, cloud 
and serverless design,1 means that appli-
cations now include components inter-
acting across multiple networks, which 
leads to an explosion in the number of 
possible execution orderings.6 Such race 
conditions can be benign from a correct-
ness perspective, but have a large impact 
on performance variability.

Even external factors affect perfor-
mance. Environmental elements, which 
may be outside of a user’s control, can still 
have a significant impact on observed 
performance, such as transient load on 
the system from interfering applications 
and daemons, network congestion, and 
even datacenter temperature.

THE PROBLEM WITH 
PERFORMANCE SUMMARIES
Nuance is always lost when we attempt 
to associate a single number with a 
complex phenomenon, such as the 
performance of a computer experi-
ment. If we are not careful, we might 
fall into one of the many statistical 
traps involved in analyzing data and 
end up with a meaningless number, 
or we may misrepresent the underly-
ing variance of what is measured. We 
might even end up reaching the oppo-
site conclusion we would if, for exam-
ple, we looked at experimental results 
using a histogram instead of relying 
on a summary.

Take, for example, the famous per-
formance report on the fastest comput-
ers in the world, the biannual TOP500 
list.13 The list reports and ranks per-
formance on a single benchmark using 
just a handful of peak metrics. Aside 
from the fact that the list ignores many 
aspects relevant to usability—such as 
availability, reliability, and cooling re-
quirements—the list only presents the 
performance characteristics of Linpack 
and ignores all of the other applica-
tions for which these computers were 
purpose-built. The report also fails to 
share details on expected performance, 
performance scalability, the number 
of runs it took to measure the optimal 
performance, or the variability of per-
formance across hardware, middle-
ware, and software parameters. Like 
the parable of the six blind men and the 
elephant, trying to describe a supercom-
puter’s performance by concentrating 
on Linpack’s Rpeak and Rmax alone 
offers a very incomplete picture. Such 
problems in performance evaluation de-
scription are not new and there exists a 
rich literature on the topic.8,9,10

Even when the experimenter is ex-
tremely careful, it’s not easy to achieve 
complete isolation and independence 
between measurements. This is as true 
for physics, biology, and psychology as 
it is for computer experiments. A host 
of mischievously subtle effects can 
muddle measurements in each field 
of experimentation. These effects can 

cause a sequence of measurements to 
deviate from an independent and iden-
tically distributed (iid) sample, which 
is a formal requirement in some of the 
most used statistical methods. These 
deviations from the iid hypothesis are 
often small and don’t interfere with 
analyses, but it is always good practice 
to check how far results deviate before 
committing to a statistical method.

THE EVOLUTION OF 
PERFORMANCE EVALUATION
Our key thesis is that we need to adopt: 
1) a reproducibility-first and 2) distri-
bution-focused approach to perfor-
mance evaluation. To elaborate, we 
next discuss the challenges stemming 
from relying on point-metrics and per-
formance summaries and the design 
principles for a modern approach that 
will enable reproducible and reliable 
performance evaluations.

Our prediction and position is that 
performance evaluation needs to 
adopt a reproducibility-first approach 
based on distributions rather than 
summaries. Performance summaries 
still have important uses, such as de-
scribing the expected (mean) perfor-
mance when it is the most germane 
property of a system, but as we have 
just discussed, they can be opaque and 
even misleading. Since performance 
summaries, such as “average response 
time” or “maximum bandwidth,” are 
increasingly less informative, we need 
to redefine performance in a way that 
captures the rich behavior of complex 
computer systems. Performance vari-
ability now becomes an object of inter-
est, in addition to the summary.

As such, we need to shift our focus 
from a single number or two to the en-
tire distribution. In other words, the dis-
tribution is the performance. The goal 
of a performance evaluation should be 
to fully characterize the performance 
distribution. This goal in turn spawns 
four new subgoals: 1) capturing the com-
plete distribution efficiently and accu-
rately, 2) communicating it effectively, 
3) reproducing performance distribu-
tions, and 4)  modeling and predicting 
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performance variability as an integral 
part of performance prediction.

1) Capturing the complete distribu-
tion may sound like a simple enough 
problem. Just repeat the experiment 
or run it long enough to identify all 
of the salient properties of the distri-
bution: its modes, tails, outliers, and 
of course, stable summary statistics. 
But in practice, we are always subject 
to resource and time constraints and 
may not be able to run an experiment 
until we are certain to characterize 
the distribution correctly. And even 
if we could afford to, who’s to say what 
is the correct duration or sample size 
for this characterization? Some re-
al-world performance distributions 
are regular enough to capture with a 
few samples, while others may require 
hundreds (see, for example, Figure 1). 
This is a complex research question 

that remains largely open in the gen-
eral case, although there are several 
strategies to stop an experiment when 
the properties of the distribution are 
fairly well understood.11

2) Communicating a distribution ef-
fectively is also harder than communi-
cating a single number or two. There 
are three aspects to this challenge. First, 
humans are better equipped to visualize 
a distribution in two or three dimen-
sions than as a table of numbers, which 
requires appropriate and informative 
graphics (as well as more “bandwidth” 
on the communicating document, such 
as page space or disk space). Examples 
of such distribution visualizations in-
clude density or violin plots, box plots, 
scatter plots, or combinations, such as 
raincloud plots (as depicted in Figure 2). 
Second, communicating distributions 
effectively also puts the onus on the 

writer to apply correct and relevant sta-
tistical analyses to the distribution, such 
as hypothesis tests, uncertainty quanti-
fication, Bayesian inference, and others, 
as appropriate. Such analyses sometimes 
require more than the basic statistical 
tools taught in undergraduate computer 
science, which in turn may percolate new 
requirements to future curricula. And 
lastly, performance distributions should 
also be communicated as complete data-
sets in digital form, so that readers may 
apply their own visualizations, statisti-
cal analyses, or conclusions.

The data availability aspect is inex-
orably connected to the increasing role 
of openness in science. There is already 
a large and growing trend of requir-
ing the sharing of research artifacts, 
including software and its full config-
uration/environment. If we start treat-
ing performance as a distribution, then 

FIGURE 1. Plots for the “hotspot” benchmark from the Rodinia benchmark suite. The A100 distribution is more irregular and 
 requires more samples to characterize accurately.2
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FIGURE 2. Plots for lud benchmark from Rodinia suite. 

2
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

D
en

si
ty

1.25

1.5

1.75

2

2.25

2.5

2.75

3

T
im

e 
(s

)

1.5

1.75

2

2.25

2.5

2.75

T
im

e 
(s

)

Density Plot Violin Plot Box Plot

1.5

1.75

2

2.25

2.5

2.75

T
im

e 
(s

)

Raindrop Plot Raincloud Plot

3 21.5
Time (s)

2.5



146 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

PREDICTIONS

it must also be fully shared as an arti-
fact: not only the code to generate it, 
but also the code to visualize and ana-
lyze it. The old formats of performance 
reporting (summary statistics or static 
graphs in PDF files) are grounded in 
years of analog tradition but are in-
sufficient for full reproducibility. We 
should rethink performance data as 
fully digital, focusing on reproduc-
ibility, interactivity and exploration, 
archival and versioning, and future- 
compatible reporting standards.

3) This aspect also naturally segues 
into the third goal, the requirement to 
reproduce performance distributions. 
All performance evaluations should 
be reproducible, or their results will be 
suspect. Reproducibility extends across 
three dimensions: evaluation condi-
tions, performance results, and interpre-
tation. When the goal of the evaluation 
is a distribution, rather than a number, 
reproducibility raises questions, such 
as: how do you reproduce a distribution? 
and when are two distributions equal or 
close enough? Again, answering these 
questions requires a more rigorous sta-
tistical approach to performance evalu-
ation than current practices.

4) Last, we should look not only at 
measuring performance as a distribu-
tion, but also at modeling and predict-
ing performance distributions. Perfor-
mance models are extremely useful to 
answering “what if?” questions when 
benchmarking is impractical, such 
as which future hardware to invest in 
or what aspects of a system can bene-
fit most from optimizations.12 Such 
questions can and should still be ad-
dressed when performance is treated 
as a distribution. This includes both 
descriptive models, which means the 
performance model needs to allow for 
performance variability (for example, 
outliers, modes, and tails), and predic-
tive models, which estimate a range for 
performance figures with well-quanti-
fied uncertainty.

THE ROAD AHEAD
Figure 3 illustrates our view on the 
current standard and practice in 

performance evaluation and modeling 
and on the way forward: a methodol-
ogy based on distribution estimates. 
While the current practice often as-
sumes iid and normality even before 
experiments are conducted, we pro-
pose to start with less restrictive hy-
potheses and adapt as we collect data. 
This leaves room for experimental 
designs that can help uncover nonlin-
earities, autocorrelations, and interac-
tions between parameters that affect 
performance. Using distribution esti-
mates will also improve other steps of 
the performance evaluation and mod-
eling process, contributing to better 
measurement, modeling and analysis, 
inference, and reporting.

Better measurement
When relying on the iid hypothesis, we 
can stop experimenting when the num-
ber of samples collected is sufficient to 
estimate the parameters of the normal 
distribution; that is, its mean μ and 
standard deviation σ. If we start with-
out strong hypotheses, we must use 
other stopping criteria. For example, 
we can compute a bootstrapped metric 
of sample self-similarity, according to 
some divergence metric, like Kolmog-
orov–Smirnov, and stop measurements 
when the sample “no longer changes” 
according to our metric. We can also 
combine different stopping criteria 
based on different hypotheses, such 
as confidence intervals and Gaussian 
mixture models, and stop when one of 
them converges. These strategies can 
accommodate complex behaviors—
such as multimodal and skewed distri-
butions, autocorrelated samples, and 
outliers—and can guide the choice of 
modeling and analysis methods.

Better modeling and analysis
After having measured performance 
expecting a normal distribution, it is 
natural to rely on point estimates of its 
parameters. Considering that devia-
tions from the normal are not so rare, 
more flexibility in modeling and anal-
ysis helps register and keep track of dif-
ferent properties of the measurements. 

Models, such as the Gaussian mixture, 
try to fit several Gaussian (normal) dis-
tributions to the data, typically marking 
each of the modes. In this case, we would 
be able to report multiple means μ̂ and 
multiple standard deviations σ̂. Other 
models can provide different ways of 
quantifying the uncertainty of a set of 
measurements. Probabilistic Bayesian 
models,7 such as Gaussian processes, 
can incorporate previous experiments 
directly into new ones in the form of 
prior assumptions that can guide exper-
imental design and analysis.

Better inference
Inferences that we can make from mea-
surements are also limited when all we 
have is the mean and standard devia-
tion. If instead of the average or expected 
performance we need to minimize the 
worst case, we need to be able to detect 
and model it, and point estimates, even 
as percentiles (for example, p99) still fail 
to capture the richness of ways in which 
performance goes wrong. More flexible 
distribution-based modeling strategies 
also help quantify the uncertainty asso-
ciated with changing parameters that 
impact performance.

Better reporting
If we focus on improving our data and 
result-reporting practices, we can ul-
timately choose which methods for 
measurement, modeling, analysis, in-
ference, and experimental design we 
wish to apply to a specific performance 
evaluation problem. Reporting distri-
bution estimates and complete data-
sets with measurements can ensure 
that other researchers can reproduce 
our processes, results, and inferences.

Table 1 summarizes some of the 
challenges we have listed and the op-
portunities for improvements we have 
discussed so far.

BROADENING ADOPTION
There are many opportunities for broad-
ening the adoption of our proposed 
approach. Here, we focus on work-
flows, edge-to-cloud, new hardware, and 
integration with other tools.
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As high-performance computing 
and artificial intelligence (AI) converge 
on using workflows, so should per-
formance evaluation raise the target 
abstractions from workloads to work-
flows. With prescribed sequentiality 
and parallelism, workflows offer more 
opportunities and create more chal-
lenges. Understanding which workloads 
come next in the workflow helps bench-
marking to better prepare for and guess 
distributions. However, parallelism also 
introduces contention on buses, inter-
connects, and networks that are nontriv-
ial to account for, magnifying the need 
for a distribution-focused approach.

Emerging workflows encompass 
edge-to-cloud (or datacenter) applica-
tions, with dataflow throughput as a 
primary objective. Consequently, per-
formance distributions will have to ac-
count for varying inputs, various data, 
and different seasonality.

The new hardware: accelerators, 
such as GPUs, SmartNICs, FPGAs, etc., 
cause additional behaviors and perfor-
mance distributions. Interconnects are 
enhanced with switches and SmartNICs 
that address scalability through man-
aging traffic contention. Understand-
ing new hardware and how it supports 
emerging AI applications will be essen-
tial. This will require characterizing dis-
tributed applications at a very large scale.

Integration with other tools, such 
as performance prediction, schedulers, 
and simulators, could effectively turn 

performance evaluation into an inte-
grated benchmarking environment. 
This in turn will improve DevOps and 
increase productivity. Integration with 
simulators and performance prediction 
would enable predicting the perfor-
mance of new hardware. 

In summary, this column advocates 
for a major shift in how we evalu-
ate computer performance, moving 

from simple, fixed measurements to 
a more complex, varied approach. It 
highlights the need to view perfor-
mance as a range of possible outcomes 
rather than just a single number. This 
change is important not only for how 
we understand computer performance 
but also for how we teach and study it. 
The ideas presented here also apply 
to other areas of computer systems, 
like energy use and system reliability.  
We urge everyone in the field—from 
researchers, through practitioners, to 
educators—to adapt their methods to 
this distribution-first perspective. 
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