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Abstract—Heterogeneous computing is growing as an impor-
tant hardware and software paradigm, both in high-performance
computing and in application computing in general. Nevertheless,
the topic is a relative newcomer to undergraduate curricula, and
there is a dearth of guidance on suitable syllabi and lesson plans.
The educational challenge of teaching this topic is exacerbated
by the rapid pace of heterogeneous-hardware innovation and
adoption, which can render parts of current textbooks obsolete.

To help other educators facing these challenges, and to promote
a conversation about a standardized approach toward teaching
heterogeneous computing, this paper presents a case study for one
semester-long class on the topic. It describes the goals, structure,
challenges, and lessons learned from the introduction of a diverse
heterogeneous hardware and software environment to computer
science majors at Reed College, a small liberal-arts school. This
paper also includes suggestions and ideas for future adoption,
adaptation, and expansion of this class.

Index Terms—Heterogeneous computing, High-performance
computing, Accelerator architectures, Computer science educa-
tion

I. INTRODUCTION

Heterogeneous computing is no longer a futuristic research
concept in computer architecture. Because of the slowing
of Moore’s Law, large performance gains can no longer be
obtained from “more of the same,” i.e., more cores and more
cache memory per processor die [1]. Instead, significant power
and performance gains are obtained by customizing entire
processors or parts therein to specialized tasks, such as matrix
multiplication, encryption, compression, and graphics.

Consequently, heterogeneous computing is rapidly growing
mainstream across all segments of computing. On the high-
end, high-performance computing (HPC) systems have been
increasingly relying on accelerator architectures such as graph-
ical processors (GPGPUs) for nearly a decade [2], [3]. In
the most recent list of the fastest 500 supercomputers in the
world, 149 systems relied on accelerator architectures, 140
of which used Nvidia graphical processor units (GPUs) [4].
At the same time on the low end, ubiquitous ARM-based
smartphones have been taking advantage of the big.LITTLE
heterogeneous architecture [5], [6]. Even mainstream com-
puting has recently turned to heterogeneous processors to
reap significant performance-per-Watt benefits, with Apple’s
introduction of the M1 processor [7] and Intel’s upcoming
‘Lakefield’ architecture [8].

The upshot of this transition from homogeneous to het-
erogeneous architectures is that the established programming
model of symmetric multi-threading and multi-processing is
no longer adequate to exploit the full potential of modern
computing architectures. Just like the transition from single-
core to multi-core architectures necessitated new tools, train-
ing, and programming models to bring software developers up
to speed [9], so does the current transition [1], [10]. And just
like teaching parallel programming became a requisite part
of many undergraduate curricula [11], [12], so will likely be
heterogeneous computing, as we are starting to see in recent
studies [13], [1].

This paper describes one such class, taught by the author at
Reed College during the 2021 Spring semester. Reed College
is a liberal-arts undergraduate school in Portland, Oregon. The
computer science (CS) department at Reed College is only a
few years old, and the CS curriculum is still undergoing active
development and expansion. This class was the first formal
offering with a syllabus centered on accelerator architectures.
The class involved both theoretical and practical aspects, in-
cluding individual projects employing parallel and distributed
computing in a heterogeneous platform, representative of
several HPC applications. The only prerequisite for this class
was a 300-level computer systems class—mandatory for all CS
majors—that advances the concepts and practice of computer
architecture and systems programming. This junior-year class
expands beyond the CS-2 class, which already introduces some
systems and parallel programming, following recent trends in
CS education [14].

The rest of this paper is organized as follows. We start
by reviewing the class’ unique experimental platform and its
software environment in Sec. II. The next section (III) details
the structure of this class, followed by a section (IV) discussing
the learning goals, their evaluation and outcomes. Section V
then enumerates and elaborates on the particular challenges
that this class presented for teaching heterogeneous systems
programming, and what lessons might be gleaned from these
challenges and their solutions. Perhaps the largest challenge to
adopting and expanding this course in other institutions may
be scaling it to larger class sizes. The factors and mitigation
suggestions for this scalability challenge are presented in
Sec. VI. Finally, we conclude in Sec. VII.



II. EXPERIMENTAL PLATFORM

A. Hardware environment

An explicit goal of this class was to blend research aspects
of diverse heterogeneous architectures with hands-on learning
of the practical aspects of programming such systems. For the
latter, access to a diverse experimental platform was key, so
a custom-built computer was assembled from parts during the
winter of 2020. The backbone of the computer comprised off-
the-shelf components: an X570-based motherboard, 48GB of
3,000MHz DDR4 RAM, a 500GB NVME PCIe boot drive, a
3TB 5,400 RPM data hard drive, and an AMD Ryzen 3900
desktop CPU. This CPU runs at up to 4.2GHz, employing 12
cores and 24 threads in a 65W power envelope. Its architecture
is not dissimilar to many of the modern HPC architectures
based on AMD platforms [15].

On top of these components, the computer included three
heterogeneous computational devices (accelerators):

1) An RTX 3090 GPU card with 24GB of RAM, the
flagship consumer GPU card from Nvidia available at
the time of this writing [16]. This card can be used
as an accelerator using toolchains such as Nvidia’s
CUDA [17].

2) A Mellanox BlueField SmartNIC (P/N: MBF1M332A-
ASCAT). This network interface card (NIC) supports
two 25GbE ports over PCIe Gen 4 interface, with spe-
cialized hardware acceleration for cryptography. More
importantly, it contains a fully-programmable processor
with 16 ARM A72 cores at 1.3GHz (64-bit) and 16GB
of RAM. It runs a fully functional operating system
(OS), Ubuntu 20.04. It can be logged into via a PCI shim
network interface from the host, and then programmed to
execute arbitrary code [18]. Mellanox products are par-
ticularly interesting from an HPC perspective, because
about a third of the top-500 supercomputers employ
them, albeit not in their smartNIC capacity yet.

3) An NGD Systems “Newport” 8TB computational stor-
age device (CSD). This device “looks and feels” like
a normal PCIe gen 4 SSD drive to the host machine,
except it additionally contains a 4-core/2GB ARM CPU
in an 8W power envelope. It is also capable of running
a complete OS (Ubuntu 16.04, later upgraded to 20.04),
and can be logged into and programmed via a network
interface over PCIe [19]. CSDs have also been recently
evaluated as accelerators for HPC applications [20], as
well as for applications such as artificial intelligence,
machine learning, and big-data analytics [21], [19], [22].

In addition to this machine, we built a second machine
for comparison and capacity purposes with an identical CPU,
an entry-level GPU from AMD, and a Mellanox BlueField2
card (P/N: MBF2M332A-AEEOT). This second-generation
“SmartNIC” uses a processor with 8 ARM A72 cores at
2.5GHz and faster hardware accelerators, but an otherwise
identical software and development environment. We preferred
the Bluefield1 card on our main evaluation machine because its
cooling requirements were simpler. We did expect to compare

performance across the two architectures, but ended up using
only the first machine for the duration of the semester.

In terms of cost, we estimate that the components for each
computer would retail for a total of approximately $7,500,
although we were fortunate enough to receive accelerator parts
at subsidized cost from Mellanox and NGD Systems.

Another device was considered, to round up accelerator
computing, a field-programmable gate array (FPGA) card.
Such an accelerator would represent reconfigurable computing,
an important aspect of heterogeneous computing. But the
difficulty of programming these devices for uninitiated CS
students was deemed too high to accomplish in one semester.
The added cost was also a limiting factor in this decision.

B. Software environment

The host ran the Ubuntu 20.04 operating system (OS), with
a typical development toolchain (GCC, Clang, Rust, Python,
and Java). The NIC also ran Ubuntu 20.04 with a similar
toolchain, while the CSD ran Ubuntu 16.04 (later upgraded to
20.04 for compatibility). Students were given login credentials
on all three (the GPU does not support a complete OS). They
have not been given root access, however, to encourage them
to build and install software dependencies from source, in
their local directories. This constraint complicated the instal-
lation of software prerequisites, but provided valuable lessons
in software portability, configuration management, package-
management, and installation. Further, students’ home direc-
tories from the host were mounted via network file system
(NFS) on both the NIC and CSD, to avoid redundancy and
to get around the extremely limited storage space on the NIC
(16GB of slow flash).

III. COURSE STRUCTURE

Seven students enrolled in this class, five seniors and
two juniors.1 The students had all previously taken CS389
“Computer Systems” as a prerequisite for this class. CS389 is
also a requirement for the CS major, and introduces low-level
programming and the interactions between software, hardware,
and middleware.

The class met three times per week for hour-long sessions.
The 14-week course proceeded in four distinct stages, each
with its own format and student interaction.

A. Introductory lectures

The first week included three lectures, starting with the
emerging role of heterogeneous architectures—in particular,
GPUs—and their benefits and challenges. The second lecture
described the software and hardware architecture of the smart-
NIC and its potential use cases. Similarly, the third lecture
focused on the architecture and applications of the CSD.
Much of the material covered in these lectures came from
the bibliography in this paper.

1This number likely affected by COVID-19 and the in-person requirements,
but is not that unusual for upper-level classes at Reed College, where the
students-to-faculty ratio is 9:1.



B. Seminar

The next three weeks were conducted as an informal re-
search seminar, reading recent studies on accelerator archi-
tectures and use cases. First, the teacher lectured on two
papers [19], [23] to exemplify the format and expectations
for students who had not previously participated in a research
seminar. Then, students gave two lectures in rotation on two
different accelerator architectures, each on a recent paper of
their choice. (All the chosen papers describe either general
frameworks for application offloading or specific use cases,
and appear in the bibliography [24], [25], [26], [27], [22],
[28], [29], [30], [31], [32], [33], [34], [20], [35].)

In-class presentation included approximately 20–30 minutes
of reviewing the main ideas and results of the paper, followed
by a lively discussion of their merits and applicability to
our experimental platform. Each student was also asked to
critique the paper they chose and suggest improvements to its
methodology or analysis. The goal of this discussion was not
only to expose students to the latest research on accelerators,
but also to develop their critical thinking skills when reading
systems literature, focusing especially on the various stated
and unstated assumptions that come with the evaluation of a
complex computer system.

C. Benchmarking

During the subsequent three weeks, the class shifted gears
from the theoretical and research aspects of heterogeneous
systems to their use and performance, by benchmarking the
actual experimental platform.

The benchmark suites and tested architectures included:
• fio: I/O performance (CPU, CSD, NIC).2

• OpenBenchmarking: Scientific computing (CPU, GPU).3

• LLCBench: Low-level architectural characterization
(CPU).4

• IOZone: filesystem benchmark (CPU, CSD).5

• Sysbench: Database benchmark (CPU, CSD).6

• RDMA-bench: RDMA performance (NIC).7

• Terasort: Hadoop I/O and sorting benchmark (CPU,
CSD).8

• NAS Parallel Benchmarks: multithreaded scientific appli-
cation benchmark (CPU).9

To be clear, the primary goal of this phase was not neces-
sarily to produce the best performance numbers. There was no
reason to spend extensive time tuning the benchmarks, and a
raw performance comparison across accelerator architectures
is not very meaningful to begin with, since they each have
different strengths. Instead, the learning objectives included:

2https://github.com/axboe/fio
3https://openbenchmarking.org/
4https://icl.cs.utk.edu/llcbench/index.htm
5http://www.iozone.org/
6https://github.com/akopytov/sysbench
7https://github.com/efficient/rdma bench
8https://www.systutorials.com/hadoop-terasort-benchmark/
9https://www.nas.nasa.gov/publications/npb.html

• Obtaining, configuring, building and installing prerequi-
site libraries across platforms, especially with no supe-
ruser access.

• Understanding the effects of workloads on performance
and identifying appropriate workloads for each platform.

• Identifying and troubleshooting measurement anomalies
and inconsistencies.

• Normalizing performance results by power usage to level
the playing field across different accelerator architectures.
Students measured the marginal power usage of their
benchmarks (and therefore their energy consumption)
using a WattsUp power meter.

• Communicating their performance comparisons effec-
tively, using tables, figures, and prose.

All students posted their benchmark parameters and re-
sults on a cloud-shared spreadsheet that we reviewed in
class. During classroom meetings, students engaged in open
discussion, sharing questions, stumbling blocks, and results
with each other. The interactive and informal team setting
allowed everyone to absorb lessons learned from platforms
and programming languages different than their own.

D. Individual projects

Throughout the second half of the semester, students had the
opportunity to engage in hands-on development for accelerator
architectures. During the seminar phase of the course, each
student was also asked about the potential relevance of their
research paper to our experimental platform and what projects
could grow out of this work. Some of the students chose
projects that were indeed inspired by these studies. Others
picked projects based on their own ideas or the teacher’s.
The class continued to meet regularly with the same informal
format as during the benchmarking phase. All students were
expected to participate and report regularly on their progress.

At the end of the semester, in lieu of a final examination,
students were asked to write a final report on their project.
The report was not restricted to a particular format or length,
but was expected to discuss the following aspects:

1) Background and bibliography on the problem.
2) Technical description of proposed solution on accelera-

tor architecture(s).
3) Evaluation (correctness, performance, and energy).
4) Conclusion.
Selected projects: The complete list of projects that the

students chose was as follows.
• A user-level filesystem on the NIC that mirrors a directory

from the host’s disk, using RDMA as the back-end
communication protocol. Unlike NFS that was used to
mount users’ home directories on the NIC and CSD, this
filesystem bypasses the TCP/IP stack (and the kernel),
providing faster access to the host’s files.10

• An implementation of the parallel prefix algorithm on the
GPU. Although such implementations already exist (as

10The source code and final report for this project are available as a sample
of the students’ work at https://github.com/iwahbe/rdma-fs.

https://github.com/axboe/fio
https://openbenchmarking.org/
https://icl.cs.utk.edu/llcbench/index.htm
http://www.iozone.org/
https://github.com/akopytov/sysbench
https://github.com/efficient/rdma_bench
https://www.systutorials.com/hadoop-terasort-benchmark/
https://www.nas.nasa.gov/publications/npb.html
https://github.com/iwahbe/rdma-fs


part of NVidia’s software-development kit, for example),
the student pursued his own implementation as the means
to learn about low-level details of CUDA programming
and performance optimization.

• Two chess-related projects. One student implemented
their own Minimax game-tree search algorithm, and
ported it to the GPU, comparing its performance with the
CPU. Another student ported the well-known open-source
Stockfish chess engine [36] to all four computational
platforms and then pitted them in tournament against
each other. To keep things fair, each platform (processor)
was given a play time budget that was normalized by its
power consumption running Stockfish (which the student
measured). Consequently, each platform was using up a
similar amount of energy for the duration of the game,
exposing the relative difference in processor performance
on an energy-adjusted basis.

• Three differential privacy (DP) implementations for the
CSD. The idea is that some sensitive data needs to be
shared for statistical analysis while preserving the privacy
of individual data points (persons). DP algorithms enable
this functionality by adding noise to typical statistical
queries such as mean, sum, and count, so that inferring
individual data becomes statistically infeasible. DP im-
plementations typically rely on a private server that only
permits access to statistical queries over the network,
but not to the raw data. The motivation behind these
projects is that by putting this server on a CSD (fully
supporting both host-sourced and networked queries),
the data can be physically handed over on a device
to its consumer, but they would still only be able to
access it via protected queries. All the raw data would
be cryptographically secured and available only to the
CSD’s processor and server. Each of the three projects
chose a different existing DP library implementation (and
programming language) to port to the CSD, but they
all used the same workload and queries to compare
performance across libraries.

Some of the other ideas for projects that were suggested or
considered include:

1) A global lock-free task queue, shared across all four de-
vices, for coordinated task scheduling and task stealing.

2) A NIC-based key-value server accessing data from either
the host’s RAM or the CSD’s backing store, using
RDMA.

3) Porting parts of the OpenCL11 library to the NIC and
CSD to streamline accelerator support.

4) Evaluation of the hardware encryption or compression
engines of the NIC/CSD and rolling out an application
atop this layer.

5) Regular-expression search acceleration, across the net-
work (NIC) or disk (CSD).

6) A performance comparison of optimized deep-learning
libraries on all four platforms.

11https://www.khronos.org/opencl/

7) Stateful, application-level packet filtering on the NIC.
8) Offloading I/O-heavy JOIN operations from a simple

SQL database to the CSD.
9) Porting any MPI application to run concurrently on the

CPU, CSD, and NIC.
10) Offloading various micro-services to the NIC, as sug-

gested in several studies [37], [38], [30].

IV. LEARNING GOALS AND OUTCOMES

This course was designed with three main learning goals,
to complement the foundational curriculum with a more ad-
vanced perspective on the heterogeneous specialty.

The first goal, addressed in the first two parts of the course,
was to understand the challenges and potential applications
of heterogeneous computing through exposure to a breadth
of recent academic research. After reading, presenting, and
learning about sixteen recent research efforts, the students
expressed an appreciation of the importance of the problem
domain, where it fits within the rest of computer science, and
what the typical structure of a systems research project looks
like.

The second goal, addressed in the third and fourth parts
of the course, was to build confidence and independent prac-
tice with the tools of heterogeneous computing through the
blending these research aspects with hands-on work. Given
the limitations of a short semester and few prerequisites,
this goal was only partially accomplished. Some students,
particularly those with strong programming skills, were able
to focus their attention and learning on the new systems
aspects, while others were sidetracked by more mundane
programming challenges such as debugging memory access.
That said, even for these students, the first-time exposure
to benchmarking, library compilation, program installation,
and power measurements, appeared to have expanded their
comprehension and independence with systems programming
tools.

The final goal, addressed throughout all sections of the
course, was to develop familiarity and appreciation with the
typical workflow in systems research: problem statement, solu-
tion engineering, implementation and debugging, performance
and power evaluation. Based on the final reports the students
submitted, they have ostensibly understood and adopted this
workflow in their own projects.

These three goals may have been ambitious for the time
frame and given the course’s modest prerequisites. In a
graduate-level curriculum or in a school with a larger CS
program, it may make more sense to split this course into
two: a research seminar, and a lab-based class (optionally
with higher prerequisites). However, this class attempted to
blend both aspects of exposure to systems academic research
and hands-on skill-building, which would not be otherwise
available in a separate class to Reed students. I believe that the
current structure represents a reasonable compromise between
the two, and worked well for most students.

Overall, students appeared to concur. Although the results of
the end-of-class student evaluation forms were not statistically

https://www.khronos.org/opencl/


significant, owing to the small size of the class, all respondents
agreed that the course encouraged them to think creatively,
critically, and/or deeply about the subject. All respondents
also strongly agreed that the conference lab discussions were
facilitated effectively. Some of the positive feedback students
offered at the conclusion of the class were:

“I liked how we explored a lot of topics, both in
the papers and in the projects, and learned a wide
variety of things relating to systems.”
“Letting us have free reign was really nice, it let us
explore a lot with our respective topics.”
“These [sic] was a topic class. It was mostly project
driven, so I liked my project and thus the class. It
would be great to do paper reading before 400 level
classes, but I appreciated getting to it eventually.”

On the critical side, one student felt that they “didn’t get
much out of my project as a result of not putting much
in”. A related suggestion was to “add a few more written
assignments, small checkin ones, to prepare the students
to know what to write for the final assignment”. Another
student was annoyed by the various technical glitches with
the experimental platform, which are addressed in more detail
in the next section.

V. CHALLENGES AND LESSONS LEARNED

This section reviews some of the idiosyncratic challenges
faced by the students or teacher with this class format, in no
particular order. Where applicable, it also presents alternatives
and suggestions for the next iteration of the class.

a) NFS mounts: Both the NIC and CSD accelerators had
their own OS and local storage, which meant that students
could copy over any files to the accelerator to write and mea-
sure their code. But for convenience and for practical concerns,
primarily low storage space, all student home directories were
mounted on the accelerators using the NFS protocol from the
host [39]. This mechanism meant that students only had to
work on their files on one platform (typically the host), and
have them automatically available on the accelerators. This file
sharing worked well for most instances. But because files were
mounted over a relatively slow file system, atop a relatively
slow shim network, I/O performance was significantly slower
on the accelerators for home directories. The delays were not
prohibitive for development work, but were clearly not repre-
sentative for benchmarking work. Once the students identified
this cause for slow performance, they performed all subsequent
I/O tests on the local file system on each accelerator.

b) Superuser access: The decision to withhold superuser
privileges (“root”) from students was meant to encourage stu-
dents to download, configure, and if necessary, port and install
local copies of software dependencies. Students are rarely
expected to learn these skills in undergraduate classes, even
though they can be essential in the real-world environment of
security-sensitive deployments. The main disadvantage of this
decision, however, is that some dependencies simply do not
work without root privileges, and others are clunky.

For example, vendor-specific dependencies such as Nvidia’s
CUDA12 and OFED13 require system-wide installation to work
well. Some students also needed to configure the machine’s
network interfaces, which requires root privileges.

Another interesting example was Python libraries with bi-
nary components, such as numpy.14 On the one hand, these
libraries are designed to work well in local installations (using
tools such as Python’s virtual environment, venv). On the
other hand, because of the NFS sharing of home directories,
these local installations shared files across hosts. For those
libraries that incorporate a compiled binary component, the
binary is then shared across incompatible architectures (x86-
64 / AArch64), which inevitably does not work.

One simple solution to this problem is to avoid file sharing
across the host and accelerator and duplicate all the files
across architectures. This leads to space waste, redundancy,
confusion, and errors. Worse still, it may simply not be
practical on accelerators with extremely low storage, such as
the SmartNIC. Another solution, which we implemented in
class, is to install only the binary dependencies at the system
level (using Ubuntu’s apt tool). This compromise did require
the use of root privileges by the teacher, but did not affect the
students’ learning goals of porting and installing source-based
dependencies. In retrospect, it would have made more sense
to preinstall common system-level libraries before the course
began and eliminate this needless stumbling block.

c) Software compatibility and upgrade woes: As de-
scribed in Sec. II, the host CPU and the SmartNIC were
running Ubuntu 20.04, while the CSD was running Ubuntu
16.04. This mismatch became a problem when one of the
projects required a recent version of Python, which simply
would not install cleanly on Ubuntu 16.04. NGD Systems
responded quickly by providing an experimental OS image
with Ubuntu 20.04, and by assisting through several iterations
of configuration, installation, and troubleshooting.

Each one of these iterations required erasing and rewriting
the main partition on the CSD’s drive. This presented only a
minor hassle to students, since their home directories resided
on the host’s drive, mounted over NFS, and they could con-
tinue development on the similar architecture of the NIC. But
in one of these iterations, the host’s main drive was mistakenly
selected for erasure instead of the CSD’s. Fortunately, a data-
loss disaster was averted, because the ‘/home’ partition was
safely separated from the ‘/’ partition on the host. This was
a valuable, albeit inadvertent, lesson on the configuration of
such a host machine. This mistake nevertheless caused delays,
because the host’s OS had to be reconfigured, which took
several hours.

During this process, it was very useful to follow and update
a detailed set of notes on the installation and configuration of
the host OS (and each accelerator’s). Another obvious take-
away is to keep frequent and remote backups. In our case, most

12https://developer.nvidia.com/cuda-toolkit
13https://developer.nvidia.com/networking/infiniband-software
14https://numpy.org/
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students kept repositories of their code on github.com, with
fairly recent changes pushed. But a more systematic backup
solution may be advisable and likely simple to implement.

d) Hardware compatibility: The fact that three of the
platforms provided the same OS did simplify code portability
across these platforms. In most cases, code simply had to be
recompiled and then ran as-is. One compatibility issue arose
in the FUSE/RDMA project, when raw binary data structures
(using C’s union structure) was transferred in-memory back
and forth between ARM and x86, requiring some debugging
because of potential differences in endiannes.

Another hardware issue arose from the early develop-
ment status of the CSD product. Its hardware support for
cryptographic acceleration, which could have leveraged the
differential-privacy projects, had still not been exposed to pro-
grammers via application-programmer interfaces or libraries,
and remained unusable for the duration of the semester.

Finally, the three GPGPU programmers required slightly
different CUDA versions each, which caused some minor
incompatibility issues.

e) CUDA complexity: Those three students who chose to
port or write code for the GPGPU were expecting their project
to make rapid progress, since GPGPUs are ostensibly the most
mainstream accelerator, and therefore presumably the most
established one to develop for. But the lack of a standard OS
on the GPU and the requirement for specialized programming
idioms and tools presented a steep learning curve for these
students with no prior relevant experience. Ab-initio CUDA
training proved to be too big a task for half a semester, and
none of these students fully met their initial GPGPU goals.

The inclusion of GPGPUs in this class, critical because
of their importance in heterogeneous computing and HPC,
likely means that adaptations of this class should modify
its prerequisites or expectations. One such prerequisite could
be a parallel programming class, which is offered in many
undergraduate CS programs, including occasionally at Reed
College. An even better prerequisite might be a specialized
class in GPGPU programming, although such a class may be
rarer and overlap too much with this class.

Admittedly, these are not very realistic prerequisites for a
small undergraduate-only department. They may make more
sense when adopting this class for a graduate program. For
future iterations of this course at Reed College, it may make
more sense to simply limit students’ projects such that any
project that uses the GPGPU only tailors and leverages existing
libraries, unless the student has relevant prior experience.

f) COVID-19: Perhaps the most unusual challenge was
teaching and learning during the height of a global pandemic.
Naturally, the class faced the same challenges shared by all
other undergraduate CS classes: remote students, communica-
tion breakdowns, increased overhead, and reduced effective-
ness. In addition, the need to have physical access to the
experimental platform (to measure its power consumption)
posed additional obstacles for the students, who had to sched-
ule exclusive time slots in the machine room. This constraint
could have severely limited the scalability and effectiveness

of the class, but the small number of students meant that
in practice, scheduling conflicts were rare, and local students
often volunteered to carry out power measurement tasks for
remote students.

VI. SCALING THE CLASS SIZE

Responding to these challenges was helped by the small size
of the inaugural class, but this is obviously not a generalizable
solution for larger schools. Some of these challenges are
alleviated simply with time and experience, such as the initial
setup complexities. For other the challenges, the following
suggestions could help scale this class to larger sizes.

a) Equipment cost: One major limitation to scaling is
the necessary lab equipment. A single computer or accelerator
can only serve so many students (probably ten or fewer), so
more equipment needs to be acquired for larger class sizes. As
mentioned earlier, two computers were set up for this class,
but the small number of students was adequately served with
just one.

This course used bleeding-edge equipment that is not nec-
essary for achieving its learning goals. GPU programming is
not substantially different between a $2,000 card and a $400
one. Nor is there a meaningful difference when using entry-
level CSD and SmartNIC. Acquiring previous-generation or
lower-end equipment may be a cost-effective way to scale the
equipment for this class. The performance obtained may not be
as impressive or representative, but maximizing performance
numbers is not one of the stated learning goals of the course.
The same argument can be made for allowing the platform to
age for two-to-four years before budgeting for replacement.

b) Technical support: A significant portion of the stu-
dents’ time, as well as the instructor, was spent on config-
uring, debugging, and patching the experimental platform.
The time spent on this task is not productive towards the
learning outcomes of the class, and likely grows with the
number of students. On the other hand, much of this effort
should not recur from semester to semester, and may subside
substantially after the teething troubles of the initial course
run. The setup and administration effort may also be reduced
by acquiring more mature accelerators instead of cutting-edge
pre-production parts, as suggested for lowering costs as well.

c) Attention to individuals: For modestly larger class
sizes (say, up to 20–30 students), much of the original class
structure should scale successfully with little change. The
second part of the class (research seminar) can be modified
such that each student only presents a single paper, or even half
a paper (in pairs). It can also be overlapped with the third part
(benchmarking), which tends to require more offline work than
online presentation, and thus be extended through the middle
of the course. The fourth part, projects, rarely required the
full 50 minutes of lecture time to review all seven projects,
especially since not all students could produce reportable
progress three times per week. It is therefore expected that
moderately increasing the number of students could work
without altering the format of this part.



For much larger classes, this course will probably not
scale as is. Much of the classroom interaction relies on the
familiarity of every student (and instructor) with everyone’s
benchmarks and projects. There are also frequent technical
stumbling blocks that require instructor assistance, which
would represent a bottleneck beyond a certain class size.
This is not dissimilar from the difficulties in scaling other
lab-intensive science classes [40], and may require the same
solutions and class structures that work for such classes, in-
cluding splitting students into smaller sections and employing
advanced students and lab assistants.

VII. CONCLUSION

This paper described a new course at Reed College’s
Computer Science department that introduced undergraduate
students to the theoretical and practical foundations of hetero-
geneous programming. The class integrated traditional lectures
on heterogeneous computer systems, student-driven reading
and discussion of recent research papers, actual application of
performance evaluation techniques and analysis, and hands-on
development on diverse accelerator architectures.

Despite the numerous technical challenges posed by the
experimental hardware, and perhaps because of them, students
remained highly motivated and engaged. Year-end feedback
from students included an appreciation of the wide choice
of topics students had at every phase of the course and the
inclusion of nonacademic practical skills in programming,
benchmarking, and system administration.

This paper includes bibliography and linked resources to
reproduce the material and curriculum for this class. Hope-
fully, these materials can serve to develop and evolve similar
classes on this emerging and increasingly important aspect of
high-performance computing.
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