
STORM: Scalable Resource Management for
Large-Scale Parallel Computers∗

Eitan Frachtenberg† Fabrizio Petrini†,‡ Juan Ferńandez§ Scott Pakin†

Abstract

Although clusters are a popular form of high-performance computing, they remain more
difficult to manage than sequential systems—or even symmetric multiprocessors. In this pa-
per, we identify a small set of primitive mechanisms that are sufficiently general to be used
as building blocks to solve a variety of resource-management problems. We then present
STORM, a resource-management environment that embodies these mechanisms in a scalable,
low-overhead, and efficient implementation. The key innovation behind STORM is a modular
software architecture that reduces all resource management functionality to a small number of
highly scalable mechanisms. These mechanisms simplify the integration of resource manage-
ment with low-level network features. As a result of this design, STORM can launch large,
parallel applications an order of magnitude faster than the best time reported in the literature
and can gang-schedule a parallel application as fast as the node OS can schedule a sequential
application. This paper describes the mechanisms and algorithms behind STORM and presents
a detailed performance model that shows that STORM’s performance can scale to thousands
of nodes.

Keywords: C.0.b Hardware/software interface; C.0.e System architectures, integration,
and modeling; C.2.4.d Network operating systems; C.5.1.a Supercomputers

1 Introduction

Although much attention is paid to the performance ofapplicationsrunning on high-performance

computer systems, the performance of resource-management (RM) software has largely been ne-

glected. This neglect is not unfounded, for the following reasons:

1. Even the least efficient, least scalable RM tools occupy a small fraction of total time on

today’s small-to-medium-sized clusters.

∗This work was supported by the U.S. Department of Energy through Los Alamos National Laboratory con-
tract W-7405-ENG-36 and the Spanish MCYT under grant TIC2003-08154-C06-03.

†CCS-3 Modeling, Algorithms, and Informatics Group, Computer and Computational Sciences (CCS) Division,
Los Alamos National Laboratory

‡Fabrizio Petrini is now affiliated with the Applied Computer Science Group, Computational Sciences and Mathe-
matics Division, Pacific Northwest National Laboratory.

§Dpto. Ingenieŕia y Tecnoloǵia de Computadores, Universidad de Murcia (Spain)

1

http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
http://cisd.pnl.gov/csm/capabilities/data_intensive.stm
http://cisd.pnl.gov/csm/
http://cisd.pnl.gov/csm/
http://www.pnl.gov/
http://www.ditec.um.es/
http://www.um.es/

2. Today’s users are willing to tolerate noninteractive execution of their jobs.

3. Application programmers are still able to move RM functionality into their applications

to make up for whatever functionality is not provided by the RM system or for whatever

functionality is unusably slow.

With cluster sizes of tens of thousands of processors coming online [34], resource management

can no longer be ignored. Even a small amount of wasted wall-clock time translates to a significant

amount of aggregate wasted CPU time. Furthermore, nonscalable RM functions must be amortized

by calling them as infrequently as possible. This degrades responsiveness and hinders the usage

of interactive jobs and noninteractive jobs being debugged. Clusters—even the largest ones in

existence—should ideally be as usable as a desktop system, with split-second job-launch times

and timeshared job execution. We claim that clusters can approach the usability of a desktop if

functions such as job launching and scheduling can be implemented in a manner that is both fast

and scalable to large numbers of nodes. As a proof of concept of the potential for improving system

performance by optimizing RM software we have developed a system called STORM (Scalable

TOol for Resource Management). STORM implements RM primitives in an efficient manner by

delegating as much of the work as possible to scalable network collective operations.

The rest of this paper is organized as follows. Section 2 and 3 detail STORM’s architecture and

implementation. We analyze STORM’s performance in Section 4. Section 5 compares STORM to

prior resource managers. Finally, we draw some conclusions from this work in Section 6.

2 Architecture

This section describes the architecture of STORM. The main design goals for STORM were: (1) to

provide RM mechanisms that are scalable, high-performance, and lightweight, and (2) to support

the implementation of most current and future job scheduling algorithms.

To fulfill the first goal, we use a set of loosely-coupled dæmons that communicate with ex-

tremely fast messages. Dæmons are coordinated by multicasting strobes (a.k.a. heartbeat) mes-

sages with a scalable multicast algorithm. For the second goal, the dæmons are designed so that

modules for different scheduling algorithms can be “plugged” into them. In this paper, we focus

2

on one successful algorithm, gang-scheduling (GS) [8].1 We did however implement four other

scheduling algorithms, which are detailed in various scheduling-specific studies [9, 10]. GS allo-

cates both space (processors) and time resources to incoming jobs. All of the processes of a job

are coscheduled within their time slot for the duration of a timeslice and are then context-switched

to a different job in a cyclic manner.

Relative to batch scheduling, GS allows jobs to start immediately but at the cost of longer

execution times caused by resource contention with other running jobs. To amortize overhead,

gang schedulers are usually run with large scheduling quanta, on the order of seconds or even

minutes [13]. While large quanta increase throughput they also increase response time, which

hinders interactive jobs. Section 3 explains how STORM was architected to minimize rather than

amortize scheduling overhead.

2.1 Overview of STORM

Several issues were considered crucial for STORM and were incorporated into its design:

Flexibility STORM supports various scheduling algorithms, including first-come first-served

(FCFS), GS, Flexible-, Buffered-, and Implicit-Coscheduling [1, 8, 10, 24], and backfilling.

Usability STORM is designed so that parallel applications need not be changed to accommo-

date the system, and need only be relinked with a slightly modified version of the Message-

Passing Interface (MPI) library.

Portability STORM runs entirely in user mode and with no OS modifications. STORM was suc-

cessfully ported to three CPU architectures (x86, Alpha, and Itanium), and two interconnects

(QsNet and generic MPI).

Scalability STORM is designed so that most of the scheduler operations are decentralized and

asynchronous and the rest are implemented on top of scalable collective operations.

Performance STORM can take full advantage of the underlying network hardware and is de-

signed to provide significantly superior performance to any existing parallel job scheduler.

1By gang-scheduling we refer to explicit coscheduling with global synchronization.

3

Table 1: STORM dæmons
Dæmon Number Role Location

MM One per cluster Global scheduling, strobing, and resource accounting Management node
NM One per compute node Local scheduling and resource monitoring Compute nodes
PL One per application process Fork and execute application process Compute nodes

2.2 Process Structure

For ease of initial implementation, the STORM scheduler was written as a user-level scheduler

which consists of a number of communicating dæmons. The primary advantage of user-level

scheduling is that is is easier to implement and modify, which facilitates experimentation. The

primary disadvantage is that the STORM scheduler is susceptible to variability induced by the

underlying OS scheduler. If the scheduling dæmons do not each have a dedicated CPU then they

must compete with applications for CPU access, which increases scheduling time. While a longer-

term solution is to integrate the STORM scheduler with the OS kernel scheduler, the experiments

shown in this paper represent the case in which each dæmon has its own CPU (except where noted).

STORM comprises three types of dæmons (Table 1): the Machine Manager (MM), the Node

Manager (NM), and the Program Launcher (PL). These dæmons do not require dedicated CPUs

because they run only briefly and only at timeslice intervals. The MM is in charge of resource

allocation for jobs, including both space and time resources. Whenever a new job arrives, the MM

enqueues it and attempts to allocate processors to it using a buddy-tree algorithm [5, 6]. If the

scheduling policy allows for multiprogramming (as does GS), the processors are allocated in any

time slot that has enough resources available. After a successful allocation, the MM broadcasts a

job-launch message to the relevant NMs, which launch the job when its time slot arrives.

When launching a parallel application, the MM first transfers the binary image of the program

to each node’s local file system (via each node’s NM) and then instructs the PLs (again, via the

NMs) to launch the application locally. This procedure exploits an efficient broadcast mechanism

which can disseminate a file of several megabytes to all of the nodes in a fraction of a second.

(A more common but poorer-performing alternative is to disseminate files via a—less-scalable—

shared filesystem such as NFS [30]. When a process terminates, the appropriate PL notifies the

4

NM, which in turn notifies the MM. The MM then marks the time/space resources occupied by that

process as available for allocation. Section 2.4 describes the termination algorithm in more detail.

Note that even though the MM is centralized, in reality it does not create a bottleneck because all of

its global operations utilize scalable hardware broadcasts, and all of its local operations—reading

a new job, allocating resources to it, and receiving process-termination notifications—are both rare

and lightweight.

2.3 Running a Job

Jobs are launched in STORM according to the following procedure. (1) The MM reads the job in-

formation from the workload file and enqueues it. (2) After the designated job launch time, as soon

as the requested resources become available, the MM multicasts the job information (possibly with

the binary image) to all of the NMs. (3) If the NM needs to fork processes, it locates the appropriate

PLs (according to the job’s PE/timeslot allocation) and sends the job information to it using shared

memory. (4) The PLs execute the APs (Section 2.2). (5) When an AP terminates, its PL receives a

notification from the operating system. (6) The PLs notify the NM of the APs’ termination. Finally,

(7) the NMs send a message to the MM, which deallocates the processes’ resources.

For the job launching mechanism, which involves the broadcast of binaries and data, we imple-

mented a specialized protocol. This protocol alleviates one of the major bottlenecks in program

launching: the interaction with the I/O subsystem. The MM multicasts file chunks to the NMs who

write the files locally in a symmetric fashion. File chunks are pipelined and flow-controlled so that

a chunk can be sent while the next chunk is read at the source and the preceding chunk is written

at the destination. The performance of this file-distribution protocol is discussed in Section 4.2.1.

2.4 Algorithms

The key insight behind STORM’s architecture is that by reducing all RM functions to a small set of

primitives we increase STORM’s portability and maintainability. We therefore partitioned the code

into a higher-level abstraction layer which implements all of STORM’s RM functions and a lower-

level abstraction layer which maps network functionality into three basic primitives (Figure 1). Our

thesis is that if these three primitives are implemented efficiently on a network then all of STORM’s

5

STORM RM functions heartbeat, file transfer, termination detection

(STORM helper functions) flow control, queue management

STORM primitives XFER-AND-SIGNAL , TEST-EVENT, COMPARE-AND-WRITE

network primitives remote DMA, network conditionals, event signaling, . . .

Figure 1: STORM implementation structure

RM functions will be efficient as well. Furthermore, porting STORM to a new network architecture

requires only a suitable mapping of the three STORM primitives to that architecture. In this section

we describe first the lower-level abstraction layer and then the higher-level abstraction layer.

2.4.1 Lower-level Abstraction Layer

Collective communication is central to STORM’s lower-level abstraction layer. Not only is re-

source management in a cluster environmentinherentlycollective but collective operations can

be made efficient by taking advantage of network support. There are only three primitives upon

which all of STORM is based—one for global data transfer, one for local control, and one for

global control:

XFER-AND-SIGNAL Transfer (PUT) a block of data from local memory to the global memory of

a subset of nodes. Optionally signal a local and/or a remote event upon completion.

TEST-EVENT Poll a local event to see if it has been signaled. Optionally, block until it is.

COMPARE -AND-WRITE Compare (using≥, <, =, or,) a local value to a global variable on a

subset of the nodes and report whether the condition holds true everywhere. Also, optionally

assign a new value to a—possibly different—global variable.

The following are some important points about the STORM primitives’ semantics:

1. Globaldata refers to data that lies at the same virtual address on all nodes. Depending on the

implementation, global data may reside in either main memory or network-interface memory.

Global cache coherency is neither assumed nor required.

2. XFER-AND-SIGNAL and COMPARE-AND-WRITE are both atomic operations. That is,

XFER-AND-SIGNAL either PUTs data toall nodes in the destination set or—in case of a

6

network error—no nodes (and an error status is returned). The same condition holds for

COMPARE-AND-WRITE when it writes a value to a global variable. Furthermore, if multi-

ple nodes simultaneously initiate COMPARE-AND-WRITEs with identical parameters except

for the value to write, then, when all of the COMPARE-AND-WRITEs have completed, all

nodes will see the same value in the global variable. In other words, XFER-AND-SIGNAL

and COMPARE-AND-WRITE are sequentially consistent operations [19].

3. Although TEST-EVENT and COMPARE-AND-WRITE are traditional, blocking operations,

XFER-AND-SIGNAL is non-blocking. The only way to check for completion is to invoke

TEST-EVENT on a local event which XFER-AND-SIGNAL signals.

4. The semantics do not dictate whether the STORM primitives are implemented by the host

CPU or by a network coprocessor. Nor do they require that TEST-EVENT yield the CPU

(although not yielding the CPU may adversely affect system throughput [1]).

2.4.2 Higher-level Abstraction Layer

The three STORM primitives described in Section 2.4.1 are general enough to be used for a wide

variety of RM functions. Continuing our bottom-up exposition we now examine how to construct

the following functions out of those primitives: (1) issue a heartbeat (data transfer + notification)

to all nodes; (2) transfer a large file to a set of nodes; and, (3) detect termination of an appli-

cation running on a set of nodes. STORM’s implementations of job launching and its various

process-scheduling algorithms follow in a straightforward manner from heartbeats, file transfers,

and termination detection.

Both heartbeat issuance and termination detection require a remote queueing mechanism by

which a master node can multicast data into a queue read by a set of slave nodes. To ensure

that no data is lost, STORM uses aglobal flow-control algorithm (AWAIT-SPACE, Algorithm 1).

Algorithm 1 is implemented with a simple application of COMPARE-AND-WRITE. If a designated

queue is full onanynode (i.e.,∃p∈P such thatQ(p).enqueued−Q(p).length= Q(p).dequeued) the

algorithm waits and checks again. If no node’s queue is full (i.e.,Q(p).enqueued−Q(p).length<

Q(p).dequeued ∀p∈ P), the algorithm returns. Algorithms 2 and 3 show how remote queueing is

7

implemented in terms of the flow-control algorithm and the STORM primitives. The master uses

AWAIT-SPACE to wait until none of the nodes has a full queue. It then uses XFER-AND-SIGNAL

to transfer the data and signal the slaves. The slave threads merely block on the data-transfer event

and process the new data when the event occurs. Note that in Algorithms 1 and 2,Q.dequeued

represents global data, as defined on page 6.

Algorithm 1 Implementation of STORM flow-control mechanism
function AWAIT-SPACE (P, � Set of processes to write to

Q) � Queue in which to check for space

while COMPARE-AND-WRITE (P, Q.enqueued− Q.length, “<”, Q.dequeued, NULL , NULL) = TRUE do
{∃p∈ P such thatp’s queue is full. Wait and try again later.}
SLEEP(exponential backoff)

Algorithm 2 Remote queueing (master side: enqueue)
function ENQUEUE (P, � Set of processes to write to

Q, � Queue on which to push data
data, � Data to write toP’s queuetail
remoteevent, � Remote event to signal upon completion
local event) � Local event to signal upon completion

AWAIT-SPACE(P, queue)
XFER-AND-SIGNAL (P, Q.queueQ.tail, data, ‖data‖, remoteevent, local event)
Q.tail← (Q.tail +1) mod Q.length
Q.enqueued←Q.enqueued+1

Algorithm 3 Remote queueing (slave side: blocking dequeue)
function DEQUEUE(Q, � Queue from which to pop data

newdata event) � Local event signaled whenever data is enqueued

TEST-EVENT (newdata event, TRUE)
current head←Q.head
Q.head← (Q.head+1) mod Q.length
Q.dequeued←Q.dequeued+1
return Q.queuecurrent head

Heartbeat issuance The STORM master process (the MM) communicates to its slaves (the

NMs) only at regular heartbeat intervals. Using a heartbeat minimizes nondeterminism in the

cluster. STORM heartbeats have both a data transfer and a notification component. Data are first

multicast to all nodes and then the nodes are awakened and notified that new data exist. Because the

8

remote queueing shown in Algorithms 2 and 3 already supports both data transfer and notification,

the heartbeat functions (Algorithms 4 and 5) are trivial applications of remote queueing.

Algorithm 4 Heartbeat (master side: issue)
function ISSUE-HEARTBEAT (P) � Set of processes to write to

{Trivial use of Algorithm 2}
ENQUEUE(P, heartbeatqueue, heartbeatdata, heartbeatevent, NULL) {No need to wait for completion.}

Algorithm 5 Heartbeat (slave side: receive)
function ISSUE-HEARTBEAT ()

heartbeatdata← DEQUEUE(heartbeatqueue, heartbeatevent)
if heartbeatdata.type= RECEIVE-FILE-INFO then
{We were given a filename and file size; prepare to receive a file.}

else ifheartbeatdata.type= LAUNCH-JOB then
{We were given the filename of an executable program; launch it.}

else ifheartbeatdata.type= SCHEDULE-PROCESSthen
{We were given a (STORM) process ID; schedule the corresponding process.}

else if{other RM commands, to be added later} then
...

Data transfer STORM uses Algorithms 6 and 7 to distribute executable files across a cluster.

However, the same mechanisms can be used to distribute data files, as well. To increase throughput

STORM uses a double-buffering scheme on the master (i.e., send side). That is, the master divides

the file into fixed-sized chunks and overlaps the multicasting of one chunk with the reading from

disk of the next chunk. The chunks are maintained in a queue on each slave. Using a queue enables

data transfer to continue briefly even when a slave is temporarily unresponsive (e.g., because of

contention on the I/O bus from the host). At the end of the transfer, the master uses STORM’s

COMPARE-AND-WRITE mechanism to ensure that all of the slaves have finished writing the file.

This avoids a race condition with the master’s instructing the slaves to launch the executable.

Termination detection The MM must detect when all of the processes in an application have ter-

minated so it can reclaim the application’s resources. Algorithms 8 and 9 illustrate how STORM

implements termination detection. The procedure is identical regardless of whether the application

terminated normally, crashed, or was killed. The interesting aspect of STORM’s termination detec-

tion is that the MM blocks until a designated NM detects that all of the processes under its control

9

Algorithm 6 Data transfer (master side: send)
function TRANSFER-FILE (P, � Set of processes to write to

file, � Handle to a file opened for reading
numchunks, � Number of fixed-size chunks of data infile
chunkevent) � Remote event to signal after each chunk

Prerequisite: We have already opened the file for reading and issued a heartbeat of type RECEIVE-FILE-INFO that
contains the filename and the size of the file in chunks.

{Perform a double-buffered transmission.}
buf num← 0
FILE-READ (file, chunkbuf num) {Elan threads can read the host’s filesystems directly via the I/O bypass protocol.}
for [0, . . . ,numchunks−2] do {Both bounds are inclusive.}

ENQUEUE(P, chunkqueue, chunkbuf num, chunkevent, enqueueevent) {Asynchronous}
buf num← (buf num+1) mod 2
FILE-READ (file, chunkbuf num)
TEST-EVENT (enqueueevent, TRUE) {Wait for the ENQUEUE to finish.}

{No need to FILE-READ on the final iteration.}
ENQUEUE(P, chunkqueue, chunknumchunks−1, chunkevent, enqueueevent)
TEST-EVENT (enqueueevent, TRUE) {Wait for the final ENQUEUE to finish.}

Algorithm 7 Data transfer (slave side: receive)
function RECEIVE-FILE (P, � Set of processes to write to

file, � Handle to an file opened for writing
numchunks, � Number of fixed-size chunks of data infile
chunkevent) � Local event announcing chunk reception

Prerequisite: We have already received a heartbeat of type RECEIVE-FILE-INFO that contained the filename and the
size of the file in chunks and opened the file for writing.

{We repeatedly dequeue a chunk and write it to disk.}
for chunknum∈ [0, . . . ,numchunks−1] do

chunkdata← DEQUEUE(chunkqueue, chunkevent)
FILE-WRITE (file, chunkdata)

have terminated and notifies the MM. Only then does the MM begin polling for termination of

the application’s remaining processes. The insight is that in an SPMD programming model all

of an application’s processes tend to terminate at approximately the same time. Many MPI [31]

implementations exacerbate this effect by barrier-synchronizing as part of theirMPI Finalize()

routine. Blocking on the first node’s termination ensures that no network traffic related to termina-

tion detection will occur in the common case, while the application is running. Polling thereafter

minimizes network traffic during termination detection.

10

Algorithm 8 Termination detection (master side: wait)
function DETECT-TERMINATION (P, � Set of nodes that are running jobs

Q, � Unprocessed termination announcements
terminated, � Global array of termination flags
term event) � Local event signaled on new termination

{On heartbeat intervals, poll the job-termination queue. If another job has begun to terminate, then add it to the set
of terminating jobs.}
if TEST-EVENT (term event, FALSE) = TRUE then

job info← DEQUEUE(Q, term event)
terminatingjobs← terminatingjobs ∪ {job info.ID}

{Check each job that is in the process of terminating and see if it has finished terminating on all nodes. If so, then
reset all of theterminatedflags.}
for all j ∈ terminatingjobsdo

if COMPARE-AND-WRITE (P, terminatedj , “=”, T RUE, terminatedj , FALSE) = TRUE then
{Job has finished on all nodes.}
terminatingjobs← terminatingjobs−{j}

Algorithm 9 Termination detection (slave side: notify)
function ANNOUNCE-TERMINATION (P, � Set of nodes that are running jobs

Q, � Unprocessed termination announcements
terminated, � Global array of termination flags
term event) � Local event signaled on new terminations

{On heartbeat intervals, poll shared memory for application process completion.}
if @p such thatproc terminatedp = TRUE then

numprocs terminated← numprocs terminated+ 1
if numprocs terminated= APP-PROCS-PER-NODE then

terminatedself.nodeID ← TRUE

{Last NM notifies the MM when all of its application processes have terminated.}
if self.nodeID = last nodeID then

ENQUEUE(P, Q, self.job ID, term event, NULL) {No need to wait for completion.}

2.4.3 Generality of Mechanisms

Although the algorithms presented in Section 2.4.2 have, to date, been used by STORM to imple-

ment job launching and process scheduling (local scheduling, batch scheduling with and without

backfilling, gang scheduling, and implicit coscheduling), the mechanisms are sufficiently general

as to be used for the efficient implementation of a variety of RM functions.

For example, fault tolerance is a rather different application from process scheduling but it

relies on the same set of mechanisms. A master process periodically multicasts a heartbeat message

and—using COMPARE-AND-WRITE—queries the slaves for receipt. If COMPARE-AND-WRITE

returns FALSE, indicating that a slave missed a heartbeat, the master can isolate the failed slave and

11

commence repairs. Another proposed use of the STORM mechanisms is to implement a graphical

interface for cluster monitoring. As before, master can multicast a request for status information

and gather the results from all of the slaves. The point is that STORM’s mechanisms are general

enough for a variety of uses and fast enough to make their use worthwhile.

3 Implementation

This section details a specific implementation of the STORM primitives which were introduced

in Section 2.4.1. Algorithms 2–9 demonstrate that the STORM primitives are sufficiently flexible

to implement a variety of RM functions: heartbeat issuance, data transfer, termination detection,

and—we believe—many others. Furthermore, porting STORM to a new network architecture

requires primarily that the STORM primitives be retargeted for that architecture.

A prior publication [12] shows the expected performance—based on the best performance

reported in the literature—of the STORM primitives on Gigabit Ethernet, Myrinet, InfiniBand,

QsNet, and BlueGene/L. The data indicate that with or without hardware support, the STORM

primitives represent an ideal abstract machine that on the one hand can export the raw performance

of the network and on the other hand can provide a general-purpose basis for designing simple and

efficient resource managers.

We developed our initial implementation of STORM on Quadrics’s QsNet network [25] be-

cause (a) we have convenient access to a QsNet cluster and (b) QsNet is a convenient platform

for implementing the STORM primitives. There is a smaller semantic gap between the STORM

and QsNet primitives than there is between the STORM primitives and those offered by some of

the other networks to which we have ready access. In particular, QsNet has hardware support for

atomic transactions, PUT operations, and local and remote events. Algorithms 10–12 present pseu-

docode for the QsNet implementation of the STORM mechanisms. XFER-AND-SIGNAL (Algo-

rithm 10) follows directly from QsNet’s multicast PUT operation and TEST-EVENT (Algorithm 11)

is a trivial application of QsNet’s event-waiting primitive. Algorithm 12, COMPARE-AND-WRITE,

uses a QsNet network conditional for the comparison operation and chains this in the same trans-

action to a call to XFER-AND-SIGNAL .

12

Algorithm 10 QsNet implementation of the STORM data-transfer primitive
function XFER-AND-SIGNAL (P, � Set of processes to write to

global addr, � Address in global address space to write to
local addr, � Address in sender’s address space to read from
size, � Number of bytes to transfer
remoteevent, � Remote event to signal upon completion
local event) � Local event to signal upon completion

{Note that XFER-AND-SIGNAL is asynchronous. Status is returned by signaling a local event.}
try
{Multicast data using a trivial application of QsNet’s DMA primitives.Important: The following PUT and
SIGNAL calls (if any) must be executed as a single, atomic operation.}
PUT (global addr, local addr, size) ∀p∈ P
if remoteevent, NULL then

SIGNAL (remoteevent, SUCCESS) ∀p∈ P
if local event, NULL then

SIGNAL (local event, SUCCESS)
except

SIGNAL (local event, FAILURE)

Algorithm 11 QsNet implementation of the STORM event-synchronization primitive
function TEST-EVENT (event, � Local event to wait for

blocking) � Block if TRUE; poll if FALSE

if blocking= TRUE then
{Blocking maps trivially to QsNet’s event-blocking primitive.}
return BLOCK-ON-EVENT (event)

else
{Polling is implemented by directly examining the a hardware-set field of QsNet’seventdata structure.}
if event.numpendingsignals≥ 1 then

return TRUE

else
return FALSE

Algorithms 10–12 demonstrate that STORM’s primitives are straightforward to implement.

Even on networks with no collectives support, XFER-AND-SIGNAL and COMPARE-AND-WRITE

can be implemented with scalable, logarithmic-time broadcast and reduction algorithms [12].

4 Analysis

In this section, we analyze STORM’s performance. In particular, we (1) measure the costs of

launching jobs in STORM and (2) test various aspects of the gang scheduler (effect of the timeslice

quantum, node scalability and multiprogramming level).

13

Algorithm 12 QsNet implementation of the STORM global-comparison primitive
function COMPARE-AND-WRITE (P, � Set of processes to write to

global varR, � Variable to compare
relation, � One of{≥,<,=,,}
valueR, � Value to compare to
global varW, � Variable to write if relation is TRUE

valueW) � Value to write toglobal varW

try
if global varW = NULL then
{Multicast a QsNet network conditional.}
return (global varR 〈relation〉 valueR ∀p∈ P)

else
{Multicast a QsNet network conditional with a chained PUT transfer. This results in a single, atomic, QsNet
network operation.}
if global varR 〈relation〉 valueR ∀p∈ P then

XFER-AND-SIGNAL (P, global varW, value, ‖integer‖, NULL , xfer finished)
return TEST-EVENT (xfer finished, TRUE)

else
return FALSE

except
return FAILURE

4.1 Experimental Framework

We evaluated STORM on a 256-processor Alpha cluster with a QsNet network [25]. The cluster

comprises 64 ES40 nodes, each having four 667 MHz, Alpha EV67 processors, 8 GB of RAM, two

QM-400 Elan 3 NICs on independent 66 MHz, 64-bit PCI buses, running Red Hat Linux 7.1. At

the time of the evaluation, this cluster was rated as the world’s 83rd fastest supercomputer [34].

The experiments we review here relate to job-launching and multiprogramming mechanisms.

4.2 Job Launching Time

We first study the overhead associated with launching jobs with STORM and analyze STORM’s

scalability with the size of the binary and the number of PEs. We use the approach taken by

Brightwell et al. in their study of job launching on Cplant [3], viz., we measure the time it takes to

run a do-nothing program of size 4 MB, 8 MB, or 12 MB that terminates immediately.2

2The program contains a static array, which pads the binary image to the desired size, although the total dynamic
memory usage may exceed that. The target sizes were selected as representative of large, scientific applications at
LANL.

14

4.2.1 Launch times in STORM

STORM logically divides the job-launching task into two separate operations: The transferal (read-

ing + broadcasting + writing + notifying the MM) of the binary image and the actual execution,

which includes sending a job-launch command, forking the job, waiting for its termination, and

reporting back to the MM. To reduce nondeterminism the MM can issue commands and receive

notification of events only at the beginning of a timeslice. Therefore, both the binary transfer and

the actual execution take at least one timeslice. In the following job-launching experiments we use

a timeslice of 1 ms.

Figure 2(a) shows the time needed to transfer and execute a do-nothing application of

sizes 4 MB, 8 MB, and 12 MB on 1–256 processors. Observe that the send times are proportional

to the binary size but grow only slowly with the number of nodes. This is explained by the highly

scalable algorithms and hardware broadcast that are used for the send operation. On the other hand,

the execution times are independent of the binary size but grow more rapidly with the number of

nodes. The reason for this growth is performance skew which is caused by OS overhead and ac-

cumulated by the processes in the job [27]. In the largest configuration tested, a 12 MB file can

be launched on all 64 nodes within 110 ms, a remarkably low latency. In this case, the average

transfer time is 96 ms (a protocol bandwidth of 125 MB/s per node with an aggregate bandwidth

of 7.87 GB/s on 63 nodes3) and an average execution time of 14 ms. In Section 4.4 we analyze in

depth the launch-time scalability.

4.2.2 Launching on a loaded system

To test how a heavily-loaded system affects the launch times of jobs, we created a pair of programs

that artificially load the system in a controlled manner. The first program performs a tight spin-

loop to introduce CPU contention. The second program repeatedly issues point-to-point messages

between pairs of processes to introduce network contention. Both programs are run on all 256

processors. The following experiments are the same as those used in Section 4.2.1 but with one of

the load-inducing programs simultaneously running on all nodes of the cluster.

3The binary transfer does not include the source node.

15

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150
T

im
e

(m
s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

(a) Unloaded system

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

(b) CPU-loaded system

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

(c) Network-loaded system

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(m

s)

U U U U U U U U U

Execute (unloaded)
Send (unloaded)

C C C C C C C C C

Execute (CPU loaded)
Send (CPU loaded)

N N N N N N N N N

Execute (network loaded)
Send (network loaded)

(d) Launch summary 12 MB

Figure 2: Send and execute times for a 4 MB, 8 MB, and 12 MB binary

Figure 2(b) shows the results of launching the same three binaries while the CPU-consuming

program is running in the background. In this case, STORM must make a scheduling decision

every timeslice and notify the MM when the application terminates. (Note the different scale on

they axis from that in Figure 2(a).) Observe that CPU load exacts a large increase in both send time

and execution time. The launch and execution time is now a second in the largest configuration and

with a 12 MB binary. This increase in time is due to the interference of the computation with the

I/O activities (reads and writes). Because the STORM NM and PL dæmons plus the application

plus the CPU-consuming program utilize all four CPUs, there are no CPUs remaining to service

the NIC’s I/O-handling process. The result is the sensitivity to CPU load depicted in Figure 2(b).

The second test is particularly relevant to STORM because, as a previous networking study [23]

shows, a heavily-loaded network can have an adverse effect on collective-communication perfor-

16

mance. In Figure 2(c), we can see how running the network-loading program in the background

affects the launch time of the test binaries. (Again, note the differenty-axis scale.) The execution

time does increase to 160 ms in the worst case, caused mostly by the increased delays in the collec-

tion of the termination info. However, it increases less than in the previous experiment. In contrast,

the send operation is considerably slower than on a CPU-loaded or unloaded system. This agrees

with the networking study, as the the send operation is implemented with a collective operation.

Figure 2(d) summarizes the differences among the launch times on loaded and unloaded sys-

tems. In this figure, the send and execute times are shown under the three loading scenarios (un-

loaded, CPU loaded, and network loaded), but only for the 12 MB file. Even in the worst case, with

a network-loaded system, it still takes only 1½ seconds to launch a 12 MB file on 256 processors.

4.3 Gang Scheduling Performance

Although STORM supports a variety of process scheduling algorithms—with more under

development—we have chosen to focus our evaluation specifically on GS [8], which is one of

the most popular coscheduling algorithms. The following are the important issues regarding GS:

Effect of timeslice on overheadSmaller timeslices yield better response time at the cost of de-

creased throughput (caused by scheduling overhead which cannot be amortized). In Sec-

tion 4.3.1 we show that STORM’s scheduling overhead is so low that STORM can support

workstation time quanta with virtually no performance penalty.

Node scalability Because GS requires global coordination, the cost of enacting a global decision

frequently increases with the number of processors. Section 4.3.2 demonstrates that STORM

exhibits such low overhead that applications running on large clusters can be coscheduled

almost as rapidly as small clusters.

Effect of MPL The multiprogramming level (MPL) is the amount of oversubscription of pro-

cessors to processes. Ideally, if there areP processes per processor (i.e., MPL= P), the

turnaround time will beP times what it would be with a single process per processor

(i.e., MPL = 1). In practice, schedulers require a certain amount of time to switch pro-

cesses, which causes performance degradation. Also, the process context switch can destroy

17

the working set that resides in the cache memory. Section 4.3.3 provides data showing that

application performance under STORM is not harmed by increased MPL; an MPL ofP will

cause applications to complete onlyP times slower than with an MPL of 1.

The application we use for our experiments in this section is Sweep3D [18], a time-independent,

Cartesian-grid, single-group, “discrete ordinates”, deterministic, particle-transport code which is

representative of the DOE Advanced Simulation and Computing (ASC) workload. Sweep3D repre-

sents the core of a widely utilized method of solving the Boltzmann transport equation. Estimates

are that deterministic particle transport accounts for 50–80% of the execution time of many realistic

simulations on current DOE systems.

In tests that involve an MPL of more than one, we further stress the scheduler by—somewhat

unrealistically—launching all of the jobs simultaneously.

4.3.1 Effect of Time Quantum

As a first gang-scheduling experiment, we analyze the range of usable timeslice values to better

understand the limits of STORM’s gang scheduler. Figure 3 shows the average run time of the jobs

for various timeslice values, from 300 µs to 8 s, running on 32 nodes/64 PEs. The smallest times-

lice value that the scheduler can handle gracefully is∼300 µs, below which the NM cannot process

the incoming strobe messages at the rate they arrive. More importantly, even with a timeslice as

small as 2 ms, STORM can still run multiple concurrent instances of an application with virtually

no performance degradation relative to a single instance of the application.4 This timeslice is an

order of magnitude smaller than the local Linux scheduler’s quantum and multiple orders of mag-

nitude better than the smallest time quanta that conventional gang schedulers can handle with no

performance penalties [11]. This allows for good system responsiveness and usage of the parallel

system for interactive jobs. Furthermore, a short quantum allows the implementation of advanced

scheduling algorithms that can benefit greatly from short time quanta, such as buffered coschedul-

ing (BCS) [24], implicit coscheduling (ICS) [1], and periodic boost (PB) [22]. Because STORM

can handle small time quanta with no performance penalty we chose the value of 50 ms for the next

4This result is also influenced by the poor memory locality of Sweep3D; running multiple processes on the same
processor does not further pollute their caches.

18

http://www.c3.lanl.gov/~hjw/CODES/SWEEP3D/sweep3d_readme.html
http://www.dp.doe.gov/asc/
http://www.c3.lanl.gov/~hjw/CODES/SWEEP3D/sweep3d_readme.html
http://www.c3.lanl.gov/~hjw/CODES/SWEEP3D/sweep3d_readme.html

sets of experiments. This value provides a fairly responsive system yet with minimal overhead.

0.1 1 10 100 1000 10000

Time quantum (ms)

0

10

20

30

40

50

60

70

To
ta

lr
un

tim
e

÷
M

P
L

(s
)

(2ms, 49s)

Sweep3D (MPL=1)
Sweep3D (MPL=2)
Synthetic computation (MPL=2)

Figure 3: Effect of time quantum with an MPL of 2, on 32 nodes

4.3.2 Node Scalability

An important metric of a resource manager is its scalability with the number of nodes. To test this,

we measured the effect on application run time when running on an increasing number of nodes.

Figure 4 shows the results for running the programs on varying number of nodes in the range 1–

64 for MPL values of 1 and 2 and a timeslice of 50 ms. (Results for MPL 2 are normalized by

dividing the total runtime of all jobs by 2.) We can observe that there is no visible increase in

either the application run time or overhead with the increase in the number of nodes.

1 2 4 8 16 32 64

Nodes

1

10

100

1000

To
ta

lr
un

tim
e

÷
M

P
L

(s
)

SWEEP3D, MPL=1
SWEEP3D, MPL=2
Synthetic computation, MPL=1
Synthetic computation, MPL=2

Figure 4: Effect of node scalability, varying the number of nodes in the range 1–64

19

4.3.3 Effect of MPL

Another important property of a gang scheduler is the overhead incurred by a context-switch op-

eration. Context switches can cause performance degradation due to loss of cache state, synchro-

nization difficulties across nodes, and the need to change the communication context gracefully,

including the handling of in-transit messages. The context switch in STORM requires very little

computation to determine the next process to run, suspend the current process, and resume the next

one. This is actually less work than the UNIX scheduler typically takes for a context switch [32],

so we can hypothesize that it incurs little overhead. To verify this hypothesis, we measure the effect

of the overhead incurred by the scheduler on Sweep3D. Figure 5 shows the results of running 1, 2,

4, or 8 jobs together, with a timeslice of 50 ms. All jobs were launched concurrently and run on

32 nodes. It can clearly be seen that the scheduling overhead is minimal.

1 2 4 8

Multiprogramming level

0

100

200

300

400

To
ta

lr
un

tim
e

(s
)

Measured
Ideal

Figure 5: Effect of multiprogramming level on run time

4.4 Performance and Scalability Analysis

In this section, we analyze all of the components involved in the launching of a job on an unloaded

system, and we present an analytical model showing how STORM’s performance is expected to

scale to cluster configurations containing thousands of processing nodes.

4.4.1 Performance Analysis

The time needed to launch a parallel job can be broken down into the following components:

Read time This is the time taken by the management node to read the application binary from the

20

http://www.c3.lanl.gov/~hjw/CODES/SWEEP3D/sweep3d_readme.html

file system. The image can be read from a distributed filesystem such as NFS [30], from a

local hard disk, or from a RAM disk.5 In our cluster, the NIC can read a file directly from

the RAM disk at 218 MB/s. In previous work [12] we measured the bandwidth achieved

when the NIC—with assistance from a lightweight process on the host—reads a 12 MB file

from NFS, local disk, and RAM disk into either a host- or NIC-resident buffer. We found

that it makes little difference whether the target buffers reside in main memory (11.4 MB/s

and 30.5 MB/s respectively) or NIC memory (11.2 MB/s and 31.5 MB/s respectively). How-

ever, when reading from a (fast) RAM disk, keeping data buffers in main memory gives a

bandwidth of 218 MB/s as opposed to only 120 MB/s in Elan memory.

Broadcast time This is the time to broadcast the binary image to all of the compute nodes. If

the file is read from a networked filesystem like NFS, which supports demand paging, the

distribution time and the file read time are intermixed. However, if a dedicated mechanism is

used to disseminate the file, as in ParPar [17], Cplant [3], BProc [15] or STORM, broadcast

time can be measured separately from the other components of the total launch time. QsNet’s

broadcast is both scalable and extremely fast. On the ES40 AlphaServer, the performance

for a main-memory-to-main-memory broadcast is therefore limited by the PCI I/O bus. The

hardware broadcast on 64 nodes can deliver 312 MB/s when the buffers are in NIC memory

but only 175 MB/s when the buffers are placed in main memory [12].

Write time We are concerned primarily with the overhead component of the write time. It does

not matter much if the file resides in the buffer cache or is flushed to the (RAM) disk. A

number of experiments—for brevity, not reported here—show that the read bandwidth is

consistently lower than the write bandwidth. Thus, the write bandwidth is not the bottleneck

of the file-transfer protocol.

Execution overhead Some of the time needed to launch a job in STORM is spent waiting for a

time slot in which to run the job and collect the termination information in the management

node. In our experiments the execution overhead is about 10 ms.

5A RAM disk is a segment of RAM that mimics a disk-based filesystem. RAM disks provide better performance
than mechanical media but make the corresponding amount of RAM unavailable to applications.

21

Timeslice overhead In addition, events such as process termination are collected by the MM at

heartbeat intervals only, so a delay of few heartbeat quanta can be spent in MM overhead.

The overall launch timeTlaunch can be expressed by the following equation,

Tlaunch= Ttransfer+Texec+Ttimeslice (1)

whereTtransfer represents the binary transfer delay,Texec the execution overhead andTtimeslice the

overhead induced by STORM’s scheduling policy.

Our implementation tries to pipeline the three components of file-transfer overhead—read time,

broadcast time, and write time—by dividing the file transmission into fixed-size chunks and writing

these chunks into a remote queue that contains a given number of slots. To optimize the overall

bandwidth of the pipeline,BWtransfer, we need to maximize the bandwidth of each single stage.

BWtransfer is bounded above by the bandwidth of the slowest stage of the pipeline:

BWlaunch≤min(BWread,BWbroadcast,BWwrite) = min(BWread,BWbroadcast) (2)

The buffers into which data is read and from which data is broadcast can reside in main memory

or NIC memory. We have seen that reading into main memory is faster, while broadcasting from

NIC memory is faster. The preceding inequality dictates that the better choice is to place the buffers

in main memory, as min(BWread,BWbroadcast) = min(218 MB/s,175 MB/s) = 175 MB/s when the

buffers reside in main memory, versus min(BWread,BWbroadcast) = min(120 MB/s,312 MB/s) =

120 MB/s when they reside in NIC memory.

We determined empirically the optimal chunk size and number of buffer slots (i.e., the receive-

queue length) for our cluster in a prior publication [12]. The communication protocol is largely

insensitive to the number of slots, and the best performance is obtained with two slots of 512 KB.

Increasing the number of slots does not provide any extra performance because doing so generates

more TLB misses in the NIC’s virtual memory hardware.

Figure 2(a) showed that the transfer time of a 12 MB binary is about 96 ms. Of those 96 ms,

4 ms are owed to skew caused by the OS overhead and the way that STORM dæmons act only on

22

heartbeat intervals (1 ms). The remaining 92 ms is determined by a file-transfer-protocol bandwidth

of about 131 MB/s. The gap between the previously calculated upper bound, 175 MB/s, and the

actual value of 131 MB/s is due to unresponsiveness and serialization within the lightweight host

process which services TLB misses and performs file accesses on behalf of the NIC.

Figure 6 illustrates all of the steps involved in the file-transfer protocol and indicates the per-

formance of each stage of the pipeline. The file transfer protocol is initiated by the master node,

which broadcasts a descriptor containing information about the binary: size, destination filename

and directory, access rights, etc. The master opens the source file in read mode and each slave

open the destination file in write mode (“Open file” in Figure 6). In the main loop, the master

reads a file chunk from the filesystem (“Read chunk”), waits untilall of the slaves are ready to

accept it (“Await space”), multicasts the chunk to all of the slaves (“Send chunk”), and waits for

an acknowledgment from the network (“Await sent”). Note that the master overlaps the sending

of one chunk with the reading of the subsequent chunk. The slaves perform the complementary

operations from the master; they repeatedly wait for a chunk from the master (“Await received”)

and write it to disk (“Write chunk”). The filesystem is the bottleneck in the file transfer. All of the

network operations (communication and flow control) take microseconds to complete, while most

of the filesystem operations have latencies measured in milliseconds.

4.4.2 Scalability Analysis

Because all STORM functionality is based on three mechanisms the scalability of these primitives

determines the scalability of STORM as a whole. In fact, AWAIT-SIGNAL is a local operation, so

scalability is actually determined only by the remaining two mechanisms.

Scalability of COMPARE -AND-WRITE We analyzed the scalability of QsNet’s barrier synchro-

nization (on which COMPARE-AND-WRITE is based) on the ASCI Q machine [26], a cluster with

1024 nodes/4,096 processors but otherwise identical to our cluster. As shown in Figure 7, latency

grows by a negligible amount—about 6 µs—across a range of 1024 nodes. This is a reliable indi-

cator that COMPARE-AND-WRITE, when implemented with the same hardware mechanism, will

scale as efficiently.

23

TRANSFER-FILE

ENQUEUE

TEST-EVENT

AWAIT-SPACE XFER-AND-SIGNAL

ENQUEUE

TEST-EVENT

AWAIT-SPACE XFER+SIGNAL

Master

Slaves

Send file info

Await sent

Open file Read chunk

Await space

Send chunk

Read chunk

Await written

Close file

Await space

Send chunk

Await sentAwait sent

Await receivedAwait received

Open file Write chunk Close file

Await received

Write chunk

file size/chunk size-1 iterations

108 us 2.3 ms
(218 MB/s)

3.8 ms/iteration
(131 MB/s)

5 us 3,1 ms
(162 MB/s)

5 us 74 us

108 us 74 us2.8 ms
(181 MB/s)

file size/chunk size-1 iterations

File

Comm.

Flow
control

File

Comm.

2.8 ms/iteration
(181 MB/s)

TRANSFER-FILE

TEST-EVENT TEST-EVENT

Local file operation

Network activity

Dependency

Initialization Steady state Final iteration

Figure 6: Transmission pipeline

3

4

5

6

7

8

9

10

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(µ
s)

Network Size (nodes)

HW Barrier

Figure 7: Barrier synchronization latency as a function of the number of nodes, ASCI Q [26]

24

Scalability of XFER-AND-SIGNAL To determine the scalability of XFER-AND-SIGNAL to a

large number of nodes, we need to evaluate carefully the communication performance of the hard-

ware broadcast, consider details of the hardware flow control in the network, and take into account

the wire and switch delays. QsNet transmits packets with circuit-switched flow control. A mes-

sage is chunked into packets of 320 bytes of data payload and the packet with sequence numberi

can be injected into the network only after the successful reception of the acknowledgment token

of packeti−1. On a broadcast, an acknowledgment is received by the source only when all of

the nodes in the destination set have successfully received packeti−1. Given that the maximum

transmission unit of the QsNet network is only 320 bytes, in the presence of long wires and/or

many switches, the propagation delay of the acknowledgment token can introduce a bubble in the

communication protocol’s pipeline and hence a reduction of the asymptotic bandwidth.

QsNet’s end-to-end flow-control algorithm is based in an acknowledgment token sent by the

destination NIC. The Elan’s DMA engine uses overlapped packetACK mode to maximize link

utilization [28]. In this case, the destination NIC sends theACK token immediately after receiving

the packet header. If the token arrives at the source NIC while the packet body is still being

transmitted, the next packet in the sequence can proceed without delay. Otherwise, the protocol

introduces a transmission gap (i.e., delay) before injecting the following packet.

Equation 3 describes the asymptotic bandwidth of QsNet as a function of the maximum cable

length and the number of switches that a packet traverses in the worst case. The equation distin-

guishes the case where packets can be pipelined without interruptions and the other case, in which

the combination of wire and the switch delays introduces communication gaps.

BWQsNet(Cable,Switches) =
Packet size

max(Tpacket,Tbase+2×Cable×Tcable+Switches×Tswitch)
(3)

Table 2 describes the components of Equation 3 and provides an estimate of their values. This

analytical model was used in the procurement of the ASCI Q machine [4] at Los Alamos National

Laboratory and has been validated on several network configurations with a prediction error of less

25

Table 2: Legend of terms used in the STORM scalability model
Component Description Value

Cable Maximum cable length between any pairs of nodesinput parameter
Switches Maximum number of switches crossed by a packetinput parameter
Packet size Maximum packet size 320 bytes
Tpacket Minimum packet delay at peak bandwidth 953 ns
Tbase Base delay for packet processing 580 ns
Tcable Cable delay per meter 3.94 ns/m
Tswitch Sum of the forward data delay and ack. delay 73 ns

Table 3: Bandwidth scalability
Cable length (meters)

Nodes Processors Stages Switches 10 20 30 40 50 60 70 80 90

4 16 1 1 320 320 320 315 291 271 253 238 224
16 64 2 3 320 319 295 274 256 240 226 213 202
64 256 3 5 298 277 258 242 228 215 204 194 184

256 1024 4 7 261 244 230 217 206 195 186 177 170
1024 4096 5 9 232 219 207 197187 178 171 163 157
4096 16384 6 11 209 198 188 180 172 164 158 152146

than 5%. Table 3 shows the asymptotic bandwidthBWQsNet for networks with up to 4,096 nodes

and physical diameters of up to 90 meters.

To makeBWQsNet—and, by consequence,BWbroadcast—dependent upon only a single parameter,

the number of nodes, we compute a conservative estimate of the diameter of the floor plan of the

machine, which approximates the maximum cable length between two nodes. We assume that

computers in the cluster are arranged in a square. Considering that with current technology we can

stack between four and six ES40 AlphaServer nodes in a single rack with a footprint of a square

meter,6 we estimate the floor space required by four nodes to be 4 m2 (1 m2 for the rack surrounded

by 3 m2 of floor space). The following equation therefore provides a conservative estimate of the

diameter in meters as a function of the number of nodes:

Diameter(nodes) =
√

2×nodes (4)

In a quaternary fat tree, the maximum number of switches traversed by a packet can be ex-

6See, for example, the photograph of ASCI Q athttp://www.lanl.gov/asci/.

26

http://www.lanl.gov/asci/

pressed as a function of the number of nodes:

Switches(nodes) = (2× log4(nodes))−1 (5)

By replacing the cable length and the number of switches in Equation 3, we obtain the asymp-

totic bandwidthBWQsNetas a function of the number of nodes:

BWQsNet(nodes) =
Packet size

max(Tpacket,Tbase+2×
√

2×nodes×Tcable+[(2× log4(nodes))−1]×Tswitch)
(6)

Scalability of the Binary Transfer Protocol We now consider a model of the launch time for a

12 MB executable. The model contains three parts. The first part represents the actual transmission

time and is inversely proportional to the available bandwidth for the given configuration. The

second part is the local execution time of the job, followed by the notification to the MM, which is

about 10 ms. The third part is the timeslice overhead, the time that is wasted in OS overhead and

waiting for the end of the STORM timeslices. The launch-time model indicates that

Tlaunch(nodes) =
12

BWtransfer(nodes)
+Texec+Ttimeslice . (7)

We now apply this model to two node configurations. The first one, represented by Equa-

tion 8, represents our current cluster which is based on ES40 AlphaServers that can deliver at

most 131 MB/s over the I/O bus. The second configuration, Equation 9, represents an idealized Al-

phaServer cluster that is limited by the network broadcast bandwidth (i.e., the I/O bus bandwidth

is greater than the network broadcast bandwidth).

BWES40
transfer(nodes) = min(131,BWbroadcast(nodes)) (8)

BWideal
transfer(nodes) = BWbroadcast(nodes) (9)

27

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

16384

Nodes

0

50

100

150

La
un

ch
tim

e
(m

s)

Measured
Modeled, ES40
Modeled, ideal I/O bus

Figure 8: Measured and estimated launch times

Figure 8 shows measured launch times for network configurations up to 64 nodes and esti-

mated launch times for network configurations up to 16,384 nodes. The model shows that in an

ES40-based AlphaServer, the launch time is scalable and only slightly sensitive to the machine

size. A 12 MB executable can be launched in 135 ms on 16,384 nodes. The graph also shows the

expected launch times in an ideal machine in which the I/O bus is not the bottleneck (and in which

a lightweight processes on the host can responsively handle the requests of the NIC). Both models

converge with networks larger than 4,096 nodes, because for such configurations they share the

same bottleneck, which is the network broadcast bandwidth.

5 Related Work

Although powerful hardware solutions for high-performance computing are already available, the

largest challenge in making large-scale clusters usable lies in the system software. The CM-5’s

system software relied upon a custom-designed control network for RM tasks [20]. In contrast,

STORM provides scalable job launching and process scheduling on commodity hardware. We

now examine others’ attempts at improving these two RM functions.

5.1 Job launching

The ParPar cluster environment [17] addresses the problem of the distribution of control messages

from a management node to a set of clients. ParPar utilizes a special-purpose multicast protocol,

reliable datagram multicast(RDGM), which broadcasts UDP datagrams on the network and adds

28

http://www.cs.huji.ac.il/labs/parallel/parpar.shtml

selective multicast and reliability. Each datagram is prepended by a bit string that identifies the

set of destinations, and each node in the destination set sends an acknowledgment to the manage-

ment node after the successful delivery of the broadcast datagram. By using RDGM, a job can

be launched in a few tens of seconds on a cluster with 16 nodes and with relatively good scalabil-

ity. Nevertheless, this is still significantly slower than the launch time of a sequential job on an

individual workstation and enough to annoy users who are waiting for an interactive job to launch.

GLUnix [14] is a piece of operating system middleware for clusters of workstations, designed

to provide transparent remote execution, load balancing, coscheduling of parallel jobs, and fault-

detection. The creators of GLUnix note that when forking a parallel job, the overhead in the

master node increases by a small, but linear-time, amount: an average of 220µs per client node.

Extrapolating, this implies just over 50 seconds to launch a job on 4,096 nodes (16,384 processors).

When GLUnix launches a job, remote execution messages are sent from the management node

to all of the dæmons that will run the job. Each of these dæmons generates a reply message,

indicating success or failure. When performing remote execution to more than 32 nodes over

switched Ethernet, the replies from earlier dæmons in the communication schedule collide with

the remote execution requests sent to later dæmons [14]. This causes a substantial performance

degradation. STORM, however, uses network conditionals [25], which utilize a combining tree to

reduce network contention and improve performance and scalability.

Scalability problems are already evident in ASC-scale machines (thousands of nodes). The

Computational Plant (Cplant) project [29] utilizes several large-scale commodity-based clusters.

To enhance scalability, Cplant uses a high-performance interconnect, Myrinet [2], and a custom,

communication protocol based on Portals [3]. When Cplant’s RM system launches a job, it first

identifies a group of active worker nodes, organizes them into a logical tree structure, and then fans

out the executable to the nodes. Experimental results show that a large, parallel application can be

launched on a 1010-node cluster in about 20 seconds [3]. Cplant is the closest project in spirit to

ours, in that it identifies poor RM performance as a problem worth studying and approaches the

problem by replacing a traditionally nonscalable algorithm with a scalable one.

BProc [15], the Beowulf Distributed Process Space, takes a fairly different approach to job

29

http://now.cs.berkeley.edu/Glunix/glunix.html
http://www.cs.sandia.gov/cplant/
http://www.myri.com

launching from STORM and the other works described above. Rather than copy a binary file

from a disk on the master to a disk on each of the slaves and then launching the file from disk,

BProc replicates arunning process into each slave’s memory—the equivalent of Unix’sfork()

andexec() plus an efficient migration step. The advantage of BProc’s approach is that no filesys-

tem activity is required to launch a parallel application once it is loaded into memory on the master.

Even though STORM utilizes a RAM disk-based filesystem, the extra costs of reading and writing

that filesystem add a significant amount of overhead relative to BProc’s remote process spawning.

STORM’s advantage over BProc is that the same functions STORM uses to transmit executable

files (Algorithms 6 and 7 in Section 2.4) can also be used to transmit data files. BProc has no

equivalent mechanism, although a cluster could certainly use BProc for its single-system-image

features and STORM for the underlying communication protocols.

Table 4 shows a sampling of job-launch times found in the literature; Table 5 presents the same

data extrapolated out to 4,096 nodes (twice the size of ASCI Q [4]); and Figure 9(a) graphs both

the measured and extrapolated (to 16,384 nodes) data. Although the different cluster types and

sizes make the comparison imprecise, these tables and figures give at least a general indication that

STORM does, in fact, provide a significant performance improvement over previous works.

Table 4: A selection of job-launch times found in the literature
Resource manager Job-launch time

rsh 90 seconds to launch a minimal job on 95 nodes [14]
RMS 5.9 seconds to launch a 12 MB job on 64 nodes [12]
GLUnix 1.3 seconds to launch a minimal job on 95 nodes [14]
Cplant 20 seconds to launch a 12 MB job on 1,010 nodes [3]
BProc 2.7 seconds to launch a 12 MB job on 100 nodes [15]
STORM 0.11 seconds to launch a 12 MB job on 64 nodes

Table 5: Extrapolated job-launch times
Resource manager Job-launch time extrapolated to 4,096 nodes

rsh 3827.10 seconds for 0 MB (t = 0.934n+1.266)
RMS 317.67 seconds for 12 MB (t = 0.077n+1.092)
GLUnix 49.38 seconds for 0 MB (t = 0.012n+0.228)
Cplant 22.73 seconds for 12 MB (t = 1.379lgn+6.177)
BProc 4.88 seconds for 12 MB (t = 0.413lgn−0.084)
STORM 0.11 seconds for 12 MB (see Section 4.4)

30

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)
rsh (measured)r
rsh (t = 0.934n + 1.266)
RMS (measured)R
RMS (t = 0.077n + 1.092)
GLUnix (measured)G
GLUnix (t = 0.012n + 0.228)
Cplant (measured)C
Cplant (t = 1.379lg n + 6.177)
BProc, measuredB
BProc, (t = 0.413lg n - 0.084)
STORM (measured)S
STORM (modeled; see text)

r

r

R R
R R R

R R

G

G

C C C C C C C C C C C

B B
B

BB B B BBBBBBB

S S S S S S S

(a) Measured and predicted performance

C
C

C
C

C
C

C
C

C
C

C
C

C C

C

B B B B B B B B B B B B B B

S S S S S S S S S S S S S S S
1

2
4

8
16

32
64

128
256

512
1K

2K
4K

8K
16K

Nodes

0

50

100

150

200

250

F
ac

to
r

of
S

T
O

R
M

tim
e

Cplant (t = 1.379lg n + 6.177)C C
BProc, (t = 0.413lg n - 0.084)B B
STORM (modeled; see text)S S

(b) Relative performance to STORM

Figure 9: Job-launching performance comparison

To clarify the performance improvement provided by STORM, Figure 9(b) renormalizes the

extrapolated Cplant [3] and BProc [15] data to the extrapolated STORM data, which is defined

as 1.0. Cplant and BProc are the two pieces of related work that, like STORM, scale logarithmi-

cally, not linearly, in the number of nodes. The figure shows a decrease in the Cplant and BProc

slowdown at 4,096 nodes. This is an artifact of the conservative performance model we used for

STORM in Section 4.4, which indicates decreased network bandwidth as cluster sizes—and hence,

cable lengths—increase. We extrapolated the performance of Cplant, BProc, and all of the other

job-launchers presented in Table 4, Table 5, and Figure 9(a) under the unrealistic assumption that

network performance scales indefinitely. Nevertheless, even though the STORM model is more

conservative than the other models, the crossover point between BProc and STORM is expected to

be on a system containing approximately 1 billion nodes, and the crossover point between Cplant

and STORM is expected to be on a system containing approximately 17 billion nodes.

5.2 Process scheduling

Many recent research results show that good job scheduling algorithms can substantially improve

scalability, responsiveness, resource utilization, and usability of large-scale parallel machines [1,

7]. Unfortunately, the body of work developed in the last few years has not yet led to many

31

practical implementations of such coscheduling algorithms on production clusters. We argue that

one of the main problems is the lack of flexible and efficient run-time systems that can support the

implementation and evaluation of new scheduling algorithms, in order to convincingly demonstrate

their superiority over today’s entrenched, space-shared schedulers. STORM’s flexibility positions

STORM as a suitable vessel forin vivo experimentation with alternate scheduling algorithms, so

researchers and cluster administrators can determine the best way to manage cluster resources.

As far as traditional gang-schedulers are concerned, the SCore-D scheduler [16] is one of the

fastest. By employing help from the messaging layer, PM [33], SCore-D is able to force commu-

nication into a quiescent state, save the entire global state of the computation, and restore another

application’s global state with only∼2% overhead when using a 100 ms time quantum. While this

is admirable performance, STORM is able to do significantly better. Because the STORM mecha-

nisms can be written to exploit QsNet’s process-to-process communication (versus PM/Myrinet’s

node-to-node communication), STORM does not need to force the network into a quiescent state

before freezing one application and thawing another. As a result, STORM can gang-schedule

applications with no noticeable overhead when using quanta as small as 2 ms.

Prior schedulers for large-scale computer systems sometimes required time quanta on the order

of minutes to amortize scheduler overhead [7, 21]. Table 6 lists the minimal feasible scheduling

quantum supported by STORM and previous job schedulers. That is, the table does not show the

shortest possible quantum, but rather, the shortest quantum that leads to an application slowdown

of 2% or less. Again, this is not an entirely fair comparison but it does indicate that STORM is at

least two orders of magnitude better than the best reported numbers from the literature.

Table 6: A selection of scheduling quanta found in the literature

Resource manager Minimal feasible scheduling quantum

RMS 30,000 milliseconds on 15 nodes (1.8% slowdown) [11]
SCore-D 100 milliseconds on 64 nodes (2% slowdown) [16]
STORM 2 milliseconds on 64 nodes (no observable slowdown)

32

http://pdswww.rwcp.or.jp/

6 Conclusions

While the purpose of a cluster is to run applications, it is the goal of the resource-management

system to ensure that these applications load quickly, make efficient use of cluster resources, and

interact to user input with small response times. While resource management is comparatively

simple to do well on a small-scale cluster, it is more challenging on a large-scale cluster. Current

resource-management systems require many seconds to launch a large application; they either

batch-schedule jobs—precluding interactivity—or gang-schedule them with such large quanta as to

be effectively non-interactive; and, they make poor use of resources, because large jobs frequently

suffer from internal load imbalance or imperfect overlap of communication and computation, yet

scheduling decisions are too costly to warrant lending unused resources to alternate jobs.

To address these problems, we presented STORM, a lightweight, flexible, and scalable environ-

ment for performing resource management in large-scale clusters. In terms of both job launching

and process scheduling, STORM is 1–2 orders of magnitude faster than the best reported results in

the literature [15, 16]. The key to STORM’s performance lies in its design methodology. Rather

than implement heartbeat issuance, job launching, process scheduling, and other routines as sepa-

rate entities, we designed those functions in terms of a small, common set of data-transfer and syn-

chronization mechanisms: XFER-AND-SIGNAL , AWAIT-SIGNAL , and COMPARE-AND-WRITE.

If each of these mechanisms is fast and scalable on a given platform, then STORM as a whole is

fast and scalable, as well. We validated STORM’s performance on a 256-processor Alpha clus-

ter interconnected with a Quadrics network and demonstrated that STORM performs well on that

cluster and is expected to perform comparably well on significantly larger clusters.

An important conclusion of our work is that it is indeed possible to scale up a cluster without

sacrificing fast job-launching times, machine efficiency, or interactive response time. STORM can

launch parallel jobs on a large-scale cluster almost as fast as a node OS can launch a sequential

application on an individual workstation. And STORM can schedule all of the processes in a large,

parallel job with the same granularity and with almost the same low overhead at which a sequential

OS can schedule a single process.

33

By improving the performance of various resource-management functions by two orders of

magnitude, STORM represents an important step towards making large-scale clusters as efficient

and easy to use as a workstation. While STORM is still a research prototype, we foresee STORM

or a tool based on our resource-management research as being the driving force behind making

large-scale clusters usable and efficient.

References
[1] A. C. Arpaci-Dusseau. Implicit coscheduling: Coordinated scheduling with implicit information in distributed

systems.ACM Transactions on Computer Systems, 19(3):283–331, Aug. 2001.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawick, C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
gigabit-per-second local area network.IEEE Micro, 15(1):29–36, Feb. 1995.

[3] R. Brightwell and L. A. Fisk. Scalable parallel application launch on Cplant. InProceedings of IEEE/ACM
Conference on Supercomputing (SC’01), Nov. 2001.

[4] Compaq High Performance Technical Computing Group. U.S. DOE selects Compaq to build ASCI Q.HPTC
News, 17, Sept./Oct. 2000.

[5] D. G. Feitelson. Packing schemes for gang scheduling. In D. G. Feitelson and L. Rudolph, editors,Proceedings
of the International Parallel Processing Symposium (IPPS’96), 2nd Workshop on Job Scheduling Strategies for
Parallel Processing, volume 1162 ofLecture Notes in Computer Science, pages 89–110, Apr. 1996.

[6] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Etsion, A. Kavas, T. Klainer, U. Lublin, and M. Volovic.
The ParPar system: A software MPP. In R. Buyya, editor,High Performance Cluster Computing, volume 1:
Architectures and Systems, pages 758–774, 1999.

[7] D. G. Feitelson and M. A. Jette. Improved utilization and responsiveness with gang scheduling. In D. G.
Feitelson and L. Rudolph, editors,Proceedings of the International Parallel Processing Symposium (IPPS’97),
3rd Workshop on Job Scheduling Strategies for Parallel Processing, volume 1291 ofLecture Notes in Computer
Science, pages 238–261, Apr. 1997.

[8] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits for fine-grain synchronization.Journal
of Parallel and Distributed Computing, 16(4):306–318, Dec. 1992.

[9] E. Frachtenberg, D. G. Feitelson, J. Fernandez-Peinador, and F. Petrini. Parallel job scheduling under dynamic
workloads. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,Proceedings of the 9th Workshop
on Job Scheduling Strategies for Parallel Processing, volume 2862 ofLecture Notes in Computer Science, pages
208–227. Springer-Verlag, 2003.

[10] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez. Adaptive parallel job scheduling with flexible
coscheduling.IEEE Transactions on Parallel and Distributed Systems, 16(11):1066–1077, Nov. 2005.

[11] E. Frachtenberg, F. Petrini, S. Coll, and W. Feng. Gang scheduling with lightweight user-level communication.
In Proceedings of the International Conference on Parallel Processing (ICPP’01), Workshop on Scheduling and
Resource Management for Cluster Computing, Sept. 2001.

[12] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll. STORM: Lightning-fast resource management.
In Proceedings of the IEEE/ACM Conference on Supercomputing (SC’02), Nov. 16–22, 2002.

[13] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette. An evaluation of parallel job scheduling for ASCI
Blue-Pacific. InProceedings of IEEE/ACM Conference on Supercomputing (SC’99), Nov. 1999.

[14] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and T. E. Anderson. GLUnix: a global layer Unix for
a network of workstations.Software—Practice and Experience, 28(9):929–961, July 1998.

34

[15] E. Hendriks. BProc: The Beowulf distributed process space. InProceedings of ACM International Conference
on Supercomputing (ICS’02), June 2002.

[16] A. Hori, H. Tezuka, and Y. Ishikawa. Highly efficient gang scheduling implementation. InProceedings of
IEEE/ACM Conference on Supercomputing (SC’98), Nov. 1998.

[17] A. Kavas, D. Er-El, and D. G. Feitelson. Using multicast to pre-load jobs on the ParPar cluster.Parallel
Computing, 27(3):315–327, Feb. 2001.

[18] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form of the 3-D discrete ordinates
equation on a massively parallel processor.Transactions of the American Nuclear Society, 65(108):198–199,
1992.

[19] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.IEEE
Transactions on Computers, C-28(9):690–691, Sept. 1979.

[20] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C.
Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W. Yang, and R. Zak. The network architecture
of the Connection Machine CM-5.Journal of Parallel and Distributed Computing, 33(2):145–158, Mar. 1996.

[21] J. E. Moreira, H. Franke, W. Chan, L. L. Fong, M. A. Jette, and A. B. Yoo. A gang-scheduling system for ASCI
Blue-Pacific. InHPCN Europe, pages 831–840, Apr. 1999.

[22] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. A closer look at coscheduling approaches for a net-
work of workstations. InProceedings of ACM Symposium on Parallel Algorithms and Architectures, (SPAA’99),
June 1999.

[23] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie. Hardware- and software-based collective communication on
the Quadrics network. InProceedings of the International Symposium on Network Computing and Applications
(NCA’01), Oct. 2001.

[24] F. Petrini and W. Feng. Improved resource utilization with Buffered Coscheduling.Journal of Parallel Algo-
rithms and Applications, 16:123–144, 2001.

[25] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics network: High-performance clustering
technology.IEEE Micro, 22(1):46–57, Jan./Feb. 2002.

[26] F. Petrini, J. Ferńandez, E. Frachtenberg, and S. Coll. Scalable collective communication on the ASCI Q machine.
In Proceedings of the Symposium on High Performance Interconnects (HotI’03), Aug. 2003.

[27] F. Petrini, D. Kerbyson, and S. Pakin. The case of the missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of ASCI Q. InProceedings of IEEE/ACM Conference on Supercomputing
(SC’03), Nov. 2003.

[28] Quadrics Supercomputers World Ltd.Elan Reference Manual, 1st edition, Jan. 1999.

[29] R. Riesen, R. Brightwell, L. A. Fisk, T. Hudson, J. Otto, and A. B. Maccabe. Cplant. InProceedings of the
USENIX Annual Technical Conference, Second Extreme Linux Workshop, June 1999.

[30] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck. NFS version 4 protocol.
RFC 3010, Internet Engineering Task Force, Network Working Group, Dec. 2000.

[31] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI: The Complete Reference, volume 1, The
MPI Core. The MIT Press, Cambridge, Massachusetts, 2nd edition, Sept. 1998.

[32] J. H. Straathof, A. K. Thareja, and A. K. Agrawala. UNIX scheduling for large systems. InProceedings of the
USENIX 1986 Winter Conference, Jan. 1986.

[33] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An operating system coordinated high performance commu-
nication library. In B. Hertzberger and P. M. A. Sloot, editors,High-Performance Computing and Networking:
International Conference and Exhibition (HPCN Europe), volume 1225 ofLecture Notes in Computer Science,
pages 708–717, Apr. 1997.

[34] Top 500 supercomputers.http://www.top500.org/.

35

http://www.top500.org/

	Introduction
	Architecture
	Overview of STORM
	Process Structure
	Running a Job
	Algorithms
	Lower-level Abstraction Layer
	Higher-level Abstraction Layer
	Generality of Mechanisms

	Implementation
	Analysis
	Experimental Framework
	Job Launching Time
	Launch times in STORM
	Launching on a loaded system

	Gang Scheduling Performance
	Effect of Time Quantum
	Node Scalability
	Effect of MPL

	Performance and Scalability Analysis
	Performance Analysis
	Scalability Analysis

	Related Work
	Job launching
	Process scheduling

	Conclusions
	References

