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Abstract

Commodity parallel computers are no longer a technol-
ogy predicted for some indistinct future: they are becoming
ubiquitous. In the absence of significant advances in clock
speed, chip-multiprocessors (CMPs) and symmetric mul-
tithreading (SMT) are the modern workhorses that keep
Moore’s Law still relevant.

On the software side, we are starting to observe the
adaptation of some codes to the new commodity parallel
hardware. While in the past, only complex professional
codes ran on parallel computers, the commoditization of
parallel computers is opening the door for many desktop
applications to benefit from parallelization. We expect this
software trend to continue, since the only apparent way of
obtaining additional performance from the hardware will
be through parallelization.

Based on the premise that the average desktop work-
load is growing more parallel and complex, this paper asks
the question: Are current desktop operating systems ap-
propriate for these trends? Specifically, we are interested
in parallel process scheduling, which has been a topic of
significant study in the supercomputing community, but so
far little of this research has trickled down to the desktop.

In this paper, we demonstrate, using several case stud-
ies, that contemporary general-purpose operating systems
are inadequate for the emerging parallel desktop work-
loads. We suggest that schedulers designed with an un-
derstanding of the requirements of all process classes and
their mixes, as well the abilities of the underlying architec-
ture, might be the solution to this inadequacy.

1 Introduction
Computer performance has improved at an exponential

rate since the introduction of the first microprocessor. This
improvement is particularly visible in the way commodity
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computing has permeated most aspects of our lives. To al-
low this growth, the operating system (OS), acting as the
arbiter between hardware and software, has had to keep
pace with advances in both software and hardware. Sub-
sequently, we have witnessed marked improvements in the
way OSs handle input and output (I/O) devices, user inter-
faces, networking, and interoperability. Process schedul-
ing, however, has progressed little since the introductionof
timesharing. While simple adjustments, tuning, and han-
dling of special cases was incrementally added to all com-
modity schedulers, the basic scheduling principles have re-
mained largely unchanged. This stagnation could be tol-
erated because the steady rate of performance increases
masked most scheduler inefficiencies. However, in this
paper, we posit that current trends in hardware and soft-
ware will require a shift to new scheduling policies that
are better suited for parallel hardware and richly complex
workloads. We support these claims with experimental
data on scheduling performance under forward-looking as-
sumptions on commodity workloads and architectures.

The rest of this section describes recent trends in hard-
ware and software technologies, while Section 2 elabo-
rates on why these changes will render current commod-
ity schedulers obsolete. To substantiate this claim, the
main part of this paper (Section 3) demonstrates, using
several case studies, some of the problems on which we
expect schedulers to perform poorly with future hardware
and software.

Hardware Trends: The Move to Concurrency. For
more than two decades, the phenomenal increase of mi-
croprocessor performance has fueled a similarly explosive
growth in commodity hardware and applications. How-
ever, the increase in single-processor performance is now
showing signs of slowing down. Already, supercomput-
ers (with performance growth that outpaces the growth
predicted by Moore’s Law) have shifted from single-
processor architectures to parallel ones. Just as inno-
vations in Formula One race cars are the precursor for
many improvements in mainstream vehicles, innovations
in high-end computers often portend advances in commod-
ity architectures—as was the case for example with net-
work and storage technologies.
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To maintain high rates of performance growth, manu-
facturers are turning to parallelism [21, 25]. Even single-
processor and desktop computers are shifting toward par-
allelism, offered in SMT (though not always successfully
[41]) and multicore (CMP) processors from Intel, AMD,
IBM, Sun, and others [25, 35]. The Cell processor for me-
dia applications [21] is an example of such emerging ar-
chitectures involving a relatively large number of special-
purpose computing cores.

While parallelism itself will not solve all the problems
that are curtailing performance growth—such as energy
budget, cooling capacity, and memory performance—we
focus this paper on the inherent problems facing operat-
ing systems on the way toward adequate support for paral-
lelism.

Software Trends: Increased Diversity. We assume in
this paper that ubiquitous parallel hardware brings with it
complex workloads and that software will become increas-
ingly more parallel and demanding. We posit that con-
sequently, the scheduling requirements from the OS will
grow more complex.

The wide availability of parallel hardware should con-
ceivably provide an incentive for, and spark growth in, par-
allel programming. Already a typical uniprocessor desktop
with a multitasking OS runs multithreaded applications,
motivated by considerations of resource overlapping, in-
creased responsiveness, and modularity [15]. These ap-
plications range from the multithreaded Web browser to
database and Web servers. The increasing parallelism in
hardware has also revitalized research in compiler autopar-
allelism [18, 24].

History teaches us that commodity hardware innova-
tions often trickle down to software development quickly.
If this trend continues, the move to hardware parallelism
in desktops will soon be expressed in the emergence of
novel parallel desktop applications, which leads to the cen-
tral question in this paper: Are desktop operating systems
ready for this change?

The need to manage increasedhardware parallelism
confronts operating systems with several challenges other
than increasedsoftwareparallelism: increased resource
locking overheads, increased system noise caused by pe-
riodic interrupts, and the need for a more efficient timing
mechanisms [12, 39]. We restrict the scope of this paper to
process scheduling, but we believe that the principles that
we lay out for a parallel-aware OS are also a good start for
solving these other problems.

2 Problem Discussion: Parallel Workloads
on Desktop Schedulers

The new parallelism in computer architectures chal-
lenges the general-purpose OS with workloads that were
not factored into its design. To elaborate on this claim,
this section expands on the inadequacy of desktop sched-
ulers to handle common parallel-programming paradigms
and workloads. The next section presents some actual case
studies for these scenarios.

Changes in desktop computer architecture promote

changes in typical desktop workloads, thus motivating re-
search in OS and process scheduling. The increasing clock
speed trend of the past two decades has promoted multi-
media computing, motivating research into this field, and
subsequently led to some novel scheduling policies for soft
real-time and multimedia workloads [4, 8, 10, 19, 28, 29].
Nevertheless, the performance of the commodity OS does
not have a good track record of scaling up with the under-
lying hardware performance [31], and, in particular, does
not perform well with multiprocessor workloads [33]. Par-
allel job scheduling has been studied primarily in the con-
text of supercomputers and clusters [14]. It has rarely been
studied in the context of the commodity desktop. We pre-
dict that in the near future, critical issues of parallel thread
scheduling will surface on the desktop as the degree of
parallelism in commodity machines increases. Even to-
day’s simplest parallel machines, such as SMTs or small
SMPs and CMPs, already have difficulties with many ap-
plications and workload mixes [1, 5, 20]. Commodity
schedulers are challenged at all levels of parallel execu-
tion, from SMTs [5, 37] through SMPs [1, 40], the cluster
[2, 13, 17, 39], and even supercomputers [23, 32, 40].

Current parallel programming paradigms are closely
based on Flynn’s classic categories [16], as follows:

• Single-Instruction-Multiple-Data (SIMD), also
known as theworkpile programming model. Under
this model, multiple datasets are processed in a
symmetric, independent manner.

• Multiple-Instruction-Single-Data (MISD), or thesys-
tolic/pipelined programming model. Under this
model, the same dataset undergoes several indepen-
dent transformations sequentially.

• Multiple-Instruction-Multiple-Data (MIMD), also
known as theBulk-Synchronous Parallel(BSP) pro-
gramming model. Under this model, both the dataset
and the computation are divided into subsets, with
each thread processingseveralof the data subsets.
The entire computation is divided into computational
phases and synchronizing group communication
phases.

The predominant approach to multiprocessing in general-
purpose OSs is to treat each processing element as an in-
dependent entity—processes/threads are migrated between
processing elements in an attempt to balance cache affin-
ity needs with CPU load imbalance [7, 26, 27, 34]. This
approach only supports theworkpile model, since it does
not take into account any interprocess dependence. The
result is that contemporary general-purpose schedulers are
too focused on satisfying a small set of requirements.
They miss the “big picture” and overlook the two require-
ments that we believe are critical for performance and
efficiency for parallel desktop workloads: separation of
co-interfering processes and coscheduling of collaborating
processes.

In our opinion, the growing popularity of parallel pro-
gramming mandates OS support for all parallel compu-



Name Processor technology OS CPUs

P3 Pentium-III 664 MHz Linux 2.4.8 1

P4 Pentium-IV 2800 MHz Various 1

ES40 Alpha EV6 833 MHz Linux 2.4.21 4

ES45 Alpha EV6 1250 MHz Tru64 5.1 4

IBM-2.4 Pentium-III 550 MHz Linux 2.4.22 4

IBM-2.6 Pentium-III 550 MHz Linux 2.6.9 4

Potomac Xeon 3330 MHz Linux 2.6.11 4(8)

Table 1. Experimental platforms (number in
parenthesis is logical processors on SMTs)

tation modes from manual coarse-grained parallelization
(implemented utilizing either paradigm), to compiler auto-
parallelization techniques that are mainly based on BSP.
The main challenge that general-purpose OSs are facing
when it comes to scheduling both BSP and systolic par-
allel applications is how to incorporate the interthread
dependencies in the process scheduling. The predomi-
nant approach manually conveys the dependence informa-
tion through specific interfaces to the OS [9]. In con-
trast, a more interesting approach is to deduce these de-
pendencies implicitly by tracking interprocess communi-
cation at runtime and deriving the resulting scheduling
requirements—as shown in several studies [11, 17, 40, 43].
This approach is especially effective in uncovering hidden
dependencies—for example, those involving user applica-
tion and system dæmons [11]. The next section translates
these challenges into actual mis-scheduling scenarios.

3 Case Studies

To demonstrate the importance of OS awareness of
parallel constraints, we discuss several case studies—
including both systolic and BSP applications, using vari-
ous software and hardware variations.

These examples were kept intentionally simple 1) to fa-
cilitate reproduction of our results and “benchmarks”; and,
2) to reduce the effect of complex, unmodeled relation-
ships between hardware and software components, such
as memory hierarchy considerations, I/O performance, etc.
We did attempt, however, to evaluate a wide range of hard-
ware and OS configurations, detailed in Table 1.

3.1 Systolic Paradigm: A Movie Story

The scenario we describe here may be familiar to
most readers. It involves running a latency-sensitive
application—such as a media player or a voice-over-IP ap-
plication with other tasks in the background, only to suffer
from skipped frames and poor playback quality. If the root
cause of the problem were inadequate computing capacity,
we would be forced to accept lower quality or less multi-
tasking. However, the problem results strictly from mis-
scheduling, as evidenced by the many attempts to address
latency-sensitive applications in the scheduling literature
[4, 8, 10, 19, 29, 30]. Paradoxically, simple, low-resource,
special-purpose hardware such as a portable video player
can present a movie smoothly, while a movie played on a
significantly more powerful PC is often jittery when an-

other application (e.g., an anti-virus scanner or a download
client) is running in the background. Media scheduling has
received much attention lately and recent Linux schedulers
provide far better support than older versions. We wish to
leverage this experience in parallel desktop scheduling.

3.1.1 Experiment Description

Our experiments are based on measuring the performance
of Xine, a multithreaded movie player. Xine’s design is
systolic parallel, with the two most important threads per-
forming the decoding and displaying of frames. Our work-
load consists of running Xine with increasing background
load and analyzing how different Linux schedulers are af-
fected. This workload was chosen to demonstrate how a
scheduler incognizant of process dependencies might de-
grade the throughput of a real-life parallel application.
Moreover, Xine is implicitly dependent on the graphical
subsystem—specifically on the X windows system and on
the video card’s graphical processing unit (GPU). These
two elements add an implicit stage (X server) to the sys-
tolic pipeline (which the process scheduler should iden-
tify), and an explicit stage (GPU) that handles the render-
ing per se, but is managed by the device driver layer rather
then the scheduler, and is thus not discussed in this pa-
per. We used the Klogger kernel logging framework to
log context switches [12], thus exposing CPU consump-
tion patterns. During the measurements, Xine processed a
short MPEG clip, which resides in a memory filesystem, to
avoid I/O clutter. The results, however, are mostly relevant
to MS Windows as well, since both schedulers are based
on similar principles [26, 34].

The quality metric used to evaluate the schedulers is
the achieved frame rate (calculated using Xine’s dropped
frames statistics). This metric directly embodies the user
experience, filtering out any scheduler inefficiencies too
minor to be perceived by the user [36, 15].

3.1.2 Base Case: Uniprocessors

To expose the user-visible effects of poor scheduling deci-
sions on movie playing, we reproduce here results from
a lower-end machine (P3), exposed to disruptive back-
ground activity1. The experiments consisted of running
Xine with an increasing number of CPU stressors (that it-
erate on an empty loop) with two Linux schedulers: 2.4.8,
and an improved Linux research version (based on Linux
2.4) that automatically identifies and prioritizes interactive
processes [10, 11]. Here, we measure the distribution of
CPU utilization among processes and the user-noticeable
percentage of skipped frames that Xine suffers. The Linux
2.4.8 results, shown in Figure 4(a), suggest that when
a generic scheduler does not respect the scheduling re-
quirements of a soft-real-time application’s entire systolic
thread group (Xine), the increase in background load trans-
lates directly to a decrease in interactive responsiveness.

1Even though computer performance continues to grow, low-end pro-
cessors continue to be of interest because of their wide use in portable,
power-aware, or embedded environments. Even on high-end machines,
workloads continue to require increasingly more resources(Section 1),
thereby increasing the background interference and load.
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(a) Linux 2.4.8 scheduler (b) Improved multimedia-aware scheduler

Figure 1. Comparison of two schedulers running Xine under in creasing background load on “P3”

Conversely, an interprocess dependency tracking scheduler
(Figure 1(b)) prioritizes the thread group as a whole. By
tracking interprocess communication, this scheduler iden-
tifies all the processes/threads involved in the interactive
computation, implicitly uncovering Xine’s entire systolic
pipeline and scheduling it accordingly, thus enabling good,
sustained frame rates [10, 11].

3.1.3 Emerging Platform: Multiprocessors

Uniprocessor systems are limited to temporal partitioning,
whereas multiprocessor schedulers can also utilize spa-
tial partitioning. To show the inadequacy of the standard
workpile-oriented scheduler in handling systolic applica-
tions and to expose the potential in spatial partitioning, we
repeated the Xine experiment on IBM-2.6. Furthermore,
to demonstrate that effective process placement is possible
(albeit manually) even when the memory bus is loaded, we
modified the stressors to access randomly a memory range
larger than the L2 cache.

Figure 2(a) shows the relatively poor and noisy per-
formance of the default Linux scheduler in this scenario.
When running two or fewer stressors, Xine and X received
a dedicated CPU each. The temporary performance loss
observed when we were running three stressors was caused
by the scheduler’s load-balancing attempt to run both Xine
and X on the same processor, placing them in competi-
tion for CPU resources. When we were running four to
seven stressors, however, the scheduler could not balance
the load and again separates Xine and X, allowing each to
compete with different stressors, albeit with a slight inter-
active priority gain, effectively replacing the idle process
with stressors. These zig-zag migrations explain the in-
consistent performance seen throughout the measurement.
Occasionally, these migrations also led to a positive effect
on Xine—when the imbalances improved its performance
(10 stressors).

If we manually assign Xine and X to run on processor
0 exclusively, Xine’s performance is more consistent, as
shown in Figure 2(b). The kernel log reveals that the two
performance drops (12 and 18 stressors) are caused by the
awakening of the kernel swap dæmon and not by the stres-
sors. However, one CPU is still not enough for both X and
Xine for adequate interactive experience, as attested by the

high frame loss.
We further refined the experiment by manually parti-

tioning the machine placing Xine and X on processors 0–1
and the stressors on the others (Figure 2(c)). Performance
improved in terms of lower frame loss, since X and Xine
now ran on dedicated processors. However, kernel dæmon
activity still occasionally drove X and Xine to the same
processor, again pitting them against each other in a com-
petition for insufficient CPU resources. Even though this
activity was very short, the scheduler only migrated Xine
back after a few minutes, leaving processor 1 idle for four
consecutive measurements. These effects were repeatedly
verified.

Only when manually fixing X to processor 0 and Xine
to processor 1, and letting the scheduler manage the stres-
sors on processors 2–3 as (Figure 2(d)) could we observe
predictable and smooth movie playback.

3.1.4 Summary

Our first set of experiments shows that a multimedia-aware
scheduler can produce a much better movie experience
than a naive one. Our second example shows that with
adequate knowledge of process requirements, scheduling
on a loaded multiprocessor can be successful, but this ap-
proach currently requires manual intervention. Our point
is that in both cases, knowledge about process needs and
machine state can produce far better schedules. We believe
that the required knowledge can be garnered automatically
by future schedulers so that manual intervention is not re-
quired. In this section we have explored this statement for
systolic parallel applications. The next section discusses
how this statement applies to parallel BSP applications.

3.2 BSP Paradigm: Synchronization

Parallel job scheduling—an active and developed topic
in the realm of supercomputing—has not received much
attention in the context of commodity machines. Never-
theless, if we are indeed heading toward commodity paral-
lel architectures as described in Section 1, the scheduling
requirements of BSP jobs in mixed workloads will have to
be addressed. Therefore, we designed a simple experiment
to measure the basic interferences in a mixed workload of
sequential and parallel applications.
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(c) Isolating Xine+X on CPUs 0–1 (d) X on CPU0, Xine on CPU1

Figure 2. The effect of imposing processor affinity heuristi cs on the Linux 2.6.9 scheduler running
on “IBM-2.6”. The utilization is accumulated over all four C PUs.

3.2.1 Experiment Description

A wrapper program launches a set of sequential programs
(“stressors”) and parallel programs. The stressors consume
cycles with simple computation running in an infinite loop.
The parallel programs execute the same computation but
for a predefined number of iterations. Each parallel pro-
gram is composed of a number of threads equal to the
number of processors less one2. Every few hundred of iter-
ations, the parallel threads synchronize with each other us-
ing standard Unix semaphores. This simplified BSP struc-
ture captures the essential behavior of many real parallel
programs [42] while allowing an exposition of scheduler-
specific effects—without getting into issues of I/O, mem-
ory bandwidth, and instruction mixes.

The wrapper program waits for the completion of all
the parallel programs before it terminates the sequential
programs and measures the total time to completion. By
varying the number of parallel programs and stressors, we
can measure the effect of the host OS scheduler on differ-
ent workload mixes. Additionally, the wrapper program
has a gang scheduling mode in which time is sliced into
slots. On each slot, either one parallel program, or all the
sequential programs are running exclusively. (Other pro-
grams are suspended with a SIGSTOP signal.) Thus, par-

2The one unallocated processor allows the mitigation of the effect of
system dæmons and unrelated user-level processes that might wake up
periodically, especially when gang scheduling (GS) is involved [13, 32].
A “pure” GS implementation at the OS level would simply set aside a
timeslot for housekeeping tasks and low priority processes[38].

allel programs see a dedicated view of the machine for the
duration of their timeslice, an approach that facilitates their
frequent synchronization (because all threads are in run-
ning state when synchronization is required). Time slices
are switched in a round-robin fashion.

To reduce the effect of variability and noisiness in the
results, we repeated each run at least five times, discarded
the minimum and maximum results, and averaged the re-
maining run times. By focusing on completion time, this
experiment is designed to measure the effect on the paral-
lel jobs, since the sequential applications continue to run
for an indefinite amount of time, merely representing a rel-
atively constant background load.

3.2.2 Results and Analysis

We ran this experiment with 1 to 10 parallel programs and
0 to 20 sequential stressors on all the parallel architec-
tures in Table 1. Figure 3 compares the performance of
the schedulers on ES40. As might be expected, the total
run time for both gang and default scheduling increases
with the number of parallel jobs. On ES40, the default
scheduler (Linux 2.4.21) does a poor job of coscheduling
the threads of the parallel programs. The result is higher
run times than under GS. The gap in the scheduler perfor-
mance grows as the load increases, both in terms of paral-
lel and sequential programs. On the opposite end, running
a single parallel program with few stressors yields perfor-
mance that is slightly worse for GS. The main reason for
this result is that the single parallel job, as the only one that



Stressors
Parallel Programs 2

 4
 6

 8
 10

 0
 5

 10
 15

 20

 0

 10

 20

 30

 40

 50

Time (sec)

Stressors
Parallel Programs 2

 4
 6

 8
 10

 0
 5

 10
 15

 20

 0

 10

 20

 30

 40

 50

Time (sec)

Stressors
Parallel Programs

Gang
Default

 2
 4

 6
 8

 10

 0
 5

 10
 15

 20

 0

 10

 20

 30

 40

 50

Time (sec)

Figure 3. Gang scheduling vs. default OS
scheduling on ES40

blocks, gets prioritized in Linux 2.4 over the nonblocking
sequential jobs. In addition, the relatively high time quan-
tum of GS (compared to total execution time) and overhead
added by the extra scheduling layer contribute to some per-
formance degradation with GS.

We cannot use absolute run times to compare default
and gang scheduling across architectures, because absolute
run times depend on the architecture. We therefore normal-
ize the results by calculating and plotting the slowdown of
the default scheduler when compared to GS. The results,
shown in Figure 4, are compared to the unit surface, which
represents equal run time of the gang and default sched-
uler. A slowdown higher than one represents a scenario
in which gang scheduling performs better than the default
scheduler, while the opposite is true for values below the
unit surface.

We start by comparing the effect of different OS sched-
ulers on the same architecture (Figures 4(a) and 4(b)). In
the absence of sequential jobs, parallel jobs that block on
communication tend to self-synchronize, since a thread
that tries to synchronize with a blocked thread will even-
tually block itself, releasing the CPU for another pro-
gram that is ready to run [3]. Consequently, explicit gang
scheduling is not required to achieve synchronization in a
mostly-parallel workload when blocking synchronization
is used. This effect is evident when one looks at the Stres-
sors=0 axis of the figures. In fact, the OS timer interrupt
frequency (HZ in Linux) in version 2.6 is 10 times finer
than in 2.4. This results in a faster context switch to a
newly-unblocked parallel process, and, therefore, the par-
allel programs are prioritized over the CPU-bound sequen-
tial programs. Indeed, self-synchronization is so effective
in 2.6 that the default scheduler significantly outperforms
the coarse-grained gang scheduler in low sequential loads.
However, as the number of stressors increases and can no
longer be accommodated on the spare processor, synchro-
nization of the parallel programs is hampered and the pro-
grams slow down. This fact is particularly evident on the
Parallel=1 axis, where the weight of the single parallel pro-
gram in the workload diminishes as the number of stressors
grows. By not ensuring coscheduling of its threads, the
Linux scheduler hampers the parallel program’s progress.

Another important property of a scheduler is its stabil-
ity and predictability. The IBM-2.6 figure shows a much
smoother surface than that of IBM-2.4. Analyzing the re-
sults per data point reveals that the average span of mea-
sured values for the Linux 2.4 scheduler is more than
triple that of Linux 2.6’s scheduler, possibly because of
the coarser grain at which scheduling decisions are made.
In addition, the span of measured values for both OSs is
larger than that of GS, especially for higher loads. This
fact is a direct consequence of the scheduling order and
determinism forced by GS [38].

The next pair of figures (ES40 and ES45) again com-
pares two different OS schedulers (Linux 2.4 and Tru64
5.1) on similar architectures. In this experiment, the Linux
2.4 scheduler performs even worse than on the IBM in
terms of slowdown. Because of faster processors, the ac-
tual synchronization granularity of the parallel programsis
finer on the ES40 than on the IBM, increasing its sensi-
tivity to mis-scheduling and noise [22, 23, 39]. Tru64’s
scheduler, designed from conception for multiprocessor
servers, does remarkably well with the parallel programs.
For most runs with eight stressors or less, Tru64’s sched-
uler outperforms GS regardless of the number of parallel
programs. It does, however, show significant variability
in results, occasionally taking twice as long to complete
the same experiment. We believe this problem is related to
Tru64’s high susceptibility to OS noise when all processors
are employed, as shown in a related analysis on a nearly
identical architecture [32]. Unfortunately, we do not have
access to Tru64’s source code to verify this hypothesis.

In the examples described so far, GS is a preferable pol-
icy for theparallel application, potentially at the cost of se-
quential and interactive programs. Is this always the case?
The last pair of graphs shows that enforcing coschedul-
ing on a partial resource allocation or on an Asymmetric
MultiProcessor (AMP) is not always beneficial to the par-
allel program. Figure 4(e) shows the results of running the
same workload (with four threads per parallel program) on
the Potomac, which has eight logical processors (four hy-
perthreaded Xeon MPs)3. Limiting the number of threads
to four allows each thread to run on its own processor but
wastes many internal compute resources that are otherwise
filled by the default scheduler that sees eight CPUs. More-
over, resource wasting is not the only problem in an AMP,
as shown in Figure 4(f). If we increase the number of
threads per parallel program to seven so that most logi-
cal processors are busy, we again observe poor GS perfor-
mance. The source of the problem is that every two virtual
processors share many of their internal resources, so the
threads of each parallel program end up competing with
each other instead of complementing each other [37].

3.2.3 Summary

This section has demonstrated one principle that surfaces
in many studies on parallel job scheduling: the need to

3With the widespread availability of dual-core processors and the
near-future release of quad-core processors, Potomac may be considered
a good representative of future desktop machines.
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Figure 4. Slowdown comparison of various architectures and OSs

coschedule tightly coordinated tasks, especially in mixed
workloads. Our experiments confirm that as load increases
and the workload mixes more sequential and parallel jobs,
coscheduling offers substantial performance benefits, even
in the form of the relatively rigid gang scheduling algo-
rithm [17]. While this workload may or may not be rep-
resentative of the richer workloads that will emerge with
parallel desktops, we believe it captures the main weak-
nesses of naive parallel scheduling.

As architectures grow more parallel and heteroge-
neous, coscheduling can also become a boon or a bane
for unrelated, (and unsynchronized) tasks. Coscheduling
resource-complementing processes can lead to high paral-
lel speedups, while ignoring these considerations can lead
to a situation in which processes compete with each other
for shared resources (such as the memory bus or processor
cache) [1, 5, 6, 20].

4 Conclusions

As commodity computers and their workloads continue
to evolve, the schedulers that manage them become less
adequate. The limitations of aging schedulers attract lit-
tle attention because the schedulers are good enough for
single-processor computers. However, with the move to
parallel architectures, we can no longer afford to ignore
these limitations. On the other hand, while parallel job
scheduling is a challenging research area with many open
questions still under active study [14], it may not suffice,
because these techniques were developed for much more
homogeneous workloads.

The scheduling of a mixed workload, combining tradi-
tional and new desktop applications with parallel jobs, is
only now starting to gain attention in conjunction with the

expected prevalence of commodity parallel architectures.
We posit that if they are to be truly general-purpose for

current and future workloads, commodity schedulers can-
not maintain the same anachronistic principles with which
they were conceived 30 years ago (with occasional ad-
hoc provisions added to address specific problems such
as multimedia). Our experimental results show that con-
temporary scheduling methods used on parallel workloads
can lead to significant application slowdown, diminished
user experience, and even unpredictability. Furthermore,
we show how applying common parallel scheduling tech-
niques can significantly affect performance. On the other
hand, our experiments show that often, by employing some
knowledge about the process requirements and the sys-
tem’s capabilities, one can manually find very good sched-
ules. We believe that by adapting techniques from different
scheduling domains, this can be done automatically instead
of manually. We propose the following two principles to
guide such a scheduler:

• Maximizing collaboration: Processes that require or
benefit from coscheduling should be coscheduled.

• Minimizing interference: Processes with conflicting
requirements should be separated in time or space.

Note that these principles also implicitly address differ-
ent architectures and workloads. For example, interference
can be the result of scheduling two processes on the same
hyperthreaded processor, and assigning one of them to a
different processor (spatial partitioning) can benefit both
processes. Another example: Processes that are collaborat-
ing (parallel threads) or co-dependent (data dependency)
could require coscheduling.



While these principles are not new, they are not re-
flected well in current desktop schedulers. In part, this situ-
ation arises because schedulers have an incomplete picture
of processes and architecture. We believe that by com-
bining insights from domain-specific scheduling research,
with further research, one can design a unified scheduler
that is able to discern which processes collaborate, which
interfere with each other, and how they all fit together with
the hardware.

We plan to evaluate these ideas by performing actual
experiments on a variety of contemporary workloads and
architectures. In the distant future, scalability issues could
warrant even more changes in the scheduler. Tens and hun-
dreds of cores may require the OS to be of a distributed na-
ture. Additional challenges might stem from power man-
agement heterogeneity considerations. We hope these con-
siderations can also fall under the umbrella of the princi-
ples we suggest in this paper.
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