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Direct-Coding DNA with Multilevel Parallelism
Caden Corontzos and Eitan Frachtenberg, Reed College

Abstract—The cost and time to sequence entire genomes have been on
a steady and rapid decline since the early 2000s, leading to an explosion
of genomic data. In contrast, the growth rates for digital storage device
capacity, CPU clock speed, and networking bandwidth have been much
more moderate. This gap means that the need for storing, transmitting,
and processing sequenced genomic data is outpacing the capacities of
the underlying technologies. Compounding the problem is the fact that
traditional data compression techniques used for natural language or
images are not optimal for genomic data.

To address this challenge, many data-compression techniques have
been developed, offering a range of tradeoffs between compression ratio,
computation time, memory requirements, and complexity. This paper
focuses on a specific technique on one extreme of this tradeoff, namely
two-bit coding, wherein every base in a genomic sequence is compressed
from its original 8-bit ASCII representation to a unique two-bit binary
representation. Even for this simple direct-coding scheme, current im-
plementations leave room for significant performance improvements.

Here, we show that this encoding can exploit multiple levels of
parallelism in modern computer architectures to maximize encoding and
decoding efficiency. Our open-source implementation achieves encoding
and decoding rates of billions of bases per second, which are much higher
than previously reported results. In fact, our measured throughput is
typically limited only by the speed of the underlying storage media.

Index Terms—DNA encoding, Parallel architectures

I. INTRODUCTION

The size of sequenced genomic data in the world doubles roughly
every 18 months, and has already grown to petabyte-scale [1]. Storing
and manipulating these sequences, which can be several gigabytes
long for whole genomes, requires significant storage and computing
resources [2]. Moreover, Next-generation sequencing (NGS) tech-
niques produce millions of short reads, which are less amenable
to compression algorithms that exploit the redundancies in longer
sequences [3]. Dozens of lossless compression techniques have
been proposed for DNA sequences, with varying tradeoffs between
compression ratios, encoding and decoding speed, and memory con-
sumption [4]. These tradeoffs matter because in many applications,
throughput and ease-of-processing of the encoded stream are critical
[5].

When time and memory constraints are the top priorities for a
DNA encoder, there is an encoding technique that simply maps each
of the four possible base letters (‘A’, ‘C’, ‘G’, or ‘T’) to a unique 2-bit
sequence. This encoding is not a compression method per se, even
though the trivial 4:1 size reduction it achieves from ASCII files
is not far from that achieved with more sophisticated approaches.
Standard substitution-based (e.g., Lempel-Ziv) and entropy-based
(e.g., Huffman) encoding methods rarely significantly outperform the
4:1 compression ratio of direct coding [6]. More specialized DNA-
specific approaches often achieve better size reduction either at the
cost of significant computation resources or by referring to a baseline
genome that brings its own limitations and disadvantages [2].

In this paper, we explore the idea of storing raw DNA sequences
using a bijective mapping to two bits per symbol, which is particularly
useful when extremely fast compression, decompression, access, or
search is necessary; when random-access to any base in the encoded
stream is desired; or when combined with specialized compression
techniques. There exist multiple competing text-based formats for
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raw DNA sequences that use the same ASCII-based base encoding,
such as FASTA, EMBL, GCG, GenBank, and IG, as well as binary
formats such as BAM [2], [7]. Text-based formats typically include
various metadata in addition to base sequences, which are not salient
to our discussion of hardware-accelerated binary encoding, so we
focus instead on plain-text sequence data, as shared and analyzed
in comparable studies [8]. Nevertheless, our techniques can be easily
applied to the long sequences of bases between segments of metadata
in the more complex formats.

Motivation and Contribution

The main motivation for our work is to balance the ease of
processing and interactivity of raw sequences with the moderate
storage efficiency of two-bit encoding. As alluded to earlier, there
are dozens of general and specialized compression algorithms for
DNA sequences, but their resource requirements can be significant: a
recent comprehensive benchmarking effort compared dozens of these
techniques and found that many encode or decode at a rate well under
1000 MB/sec while consuming gigabytes of RAM [9].

On the other hand, two-bit encoding offers significant efficiency
and simplicity advantages. Consequently, it forms the core of com-
pression programs such as GenBitCompress [10] and also the basis
for more sophisticated algorithms such as GenCodex and others [11]–
[15]. However, these implementations still tend to be naive and highly
serialized [16], [17]. In contrast, our novel implementation combines
the storage efficiency of binary data formats with the interactivity of
ASCII formats, while providing “just-in-time” conversion latencies
and using few resources. The main contribution of this paper is an im-
plementation of two-bit encoding that exploits multilevel parallelism
in modern architectures, encoding DNA at speeds near the underlying
hardware’s bandwidth with nominal memory consumption.

II. EVALUATION

Our C++ implementation was evaluated on a desktop machine
running Linux v. 6.2.0-32 and gcc v. 13.1.0, using a 16-core AMD
5950X CPU, 128 GiB of DDR4-3200 RAM, and Samsung 980 PRO
2TB SSD for primary storage.1 All experiments were run 100 times
to observe their variability and preceded by a Linux buffer (page
cache) flush to ensure I/O cost is included in the measured run time.

Direct-coding takes the exact same code paths regardless of the
input, so encoding and decoding time does not depend on the actual
bases in the input. We can therefore generate input of arbitrary size
with a random selection of bases. Further, to compare the encoder
and decoder on equal terms, we measure throughput in millions of
input bases per second (MBase/s) instead of MB/s, since the decoder’s
input file is a quarter of the size of the encoder’s in bytes. With these
preliminaries, we can now evaluate the performance implications of
different levels of software and hardware parallelism mechanisms.

A. Baseline sequential version

As a basis for comparison, we start with a straightforward sequen-
tial implementation of the encoder and decoder using lookup tables
(LUT). The encoder’s loop looks similar to this:

1Source code and experiments are available at github.com/eitanf/fastdna.

https://github.com/eitanf/fastdna


2

5

10

25

50

100

250

500

1 
KiB

2 
KiB

4 
KiB

8 
KiB

16
 K

iB

32
 K

iB

64
 K

iB

12
8 

KiB

25
6 

KiB

51
2 

KiB

1 
M

iB
2 

M
iB

4 
M

iB
8 

M
iB

16
 M

iB

32
 M

iB

64
 M

iB

12
8 

M
iB

25
6 

M
iB

51
2 

M
iB

1 
GiB

2 
GiB

Input size

T
hr

ou
gh

pu
t (

M
B

as
e/

s)

Operation Encoding Decoding

Fig. 1. Distribution boxplot of 100 runs of the encoder and decoder across
increasing input sizes (log-log scale)

// Encode every 4 bases into one byte
// BMAP maps from ’A’,’C’,’G’,’T’ to 0,1,3,2
void encode(char* in, size_t size, char* out) {
for (i = 0; i < size; i += 4) {

*out = BMAP[*in++];
*out = BMAP[*in++] | (*out << 2);
*out = BMAP[*in++] | (*out << 2);
*out++ = BMAP[*in++] | (*out << 2);

}
}

The baseline decoder uses a similar loop that maps each byte
of input into four bytes (bases) of output, again using a 256-entry
compile-time LUT. Any leftover bases beyond the largest multiple of
4 are handled as a special case.

Even this simple baseline implementation runs significantly faster
than typical compressing DNA encoders [9], with a maximum en-
coding throughput of over 500 MBase/s (Figure 1). Most results are
narrowly centered around the median. Larger input sizes amortize
the overhead of file I/O and setup/teardown, so they reflect better
the performance potential of the algorithm. Larger files also hide
better the deleterious effects of system-level delays (noise). These
slower runs can produce outlier points, reflecting transient effects in
the system such as context switches and I/O interference. But their
effect is only noticeable for small inputs (up to a few KiB), where
their relative magnitude is comparable to that of the overall run time.
As the input size grows, the effect of the noise grows negligible. By
the time input size reaches 1 GiB, throughput has largely converged
and the standard deviation of the run time falls below 1% of the
mean. We will therefore use an input size of 3 GiB (full human
genome size [6]) for the remainder of the evaluation, for which this
baseline implementation yields a median encoding throughput of 589
MBase/s and median decoding throughput of 659 MBase/s.

B. Device-level parallelism

The encoding and decoding work takes place on the CPU while the
I/O takes place on a separate physical device, the SSD. In the baseline
implementation, these phases happen at separate times, which means
that while one device is busy, the other is idle. We can overlap
the writing of outputs to disk with computation if we divide the
computation into chunks of the input, and issue writes to each chunk
of output while starting to compute on the next chunk. The best
chunk size to maximize this overlap depends on the relative speeds
of the computation and I/O, so we measured the throughput for
multiple chunk sizes. As Figure 2 shows, synchronous encoding and
decoding on this platform is fastest at a chunk size of 128 KiB, with
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Fig. 2. Median throughput vs. I/O chunk size with both synchronous and
asynchrnous I/O (100 runs; 3 GiB input; 95% CI; logarithmic x-axis)

a median encoding throughput of 967 MBase/s (64.3% improvement
over Baseline), and a median decoding throughput of 1047 MBase/s
(59% improvement).

The overlapping can be extended to reads as well as writes by using
the POSIX asynchronous I/O (AIO) library. This library maintains a
thread pool to execute I/O requests asynchronously [18]. By carefully
orchestrating an active and standby buffer for reads, and another pair
for writes, we can rewrite the code so that a previous chunk is written
and a future chunk is read while a current chunk is being encoded or
decoded. As the results in Figure 2 show, the effort is worthwhile. For
example, at a chunk size of 32 MiB, the median encoding bandwidth
increases to 1317 MBase/s (36.2% improvement over chunked I/O).

For larger buffer sizes, results grow noisier and require larger input
sizes to benefit from this approach. These limitations to generality
motivate our next approach, namely, multithreading.

C. Thread-level parallelism

To address the limitations of asynchronous I/O, we turn to mul-
tithreading to exploit parallelism both in the CPU and the SSD.
Note that multithreading obviates the need to use AIO, because we
already reached maximum SSD throughput, so we reuse the simple
chunked-I/O implementation with a chunk size of 128 KiB. Our
implementation splits the input and output roughly equally among
the desired number of threads, and each thread encodes/decodes in
its own memory buffers.

The threads use no locks and share no data or resources other than
the input and output files, which they each address at independent
offsets. One would expect near-perfect scalability of such a model,
but in reality, the single shared resource, disk I/O, quickly becomes a
contention hotspot (Figure 3). By 8 threads, median encoder through-
put has peaked at 3352 MBase/s. This value is close to the 3150
MiB/s bandwidth of the underlying SSD, as measured by the “fio”
benchmark using the command fio --loops=10 --size=3G
--name=bw --bs=128k --numjobs=8. We verified that the
I/O bandwidth is indeed the limiting bottleneck by running the same
experiment on a different SSD (Intel SSDPEDMW012T4), where
fio reports a bandwidth of 2050 MiB/s, and the median encoder
throughput was 1818 MBases/s. Decoding throughput is limited even
further by the slower write I/O bandwidth.

To expose the actual limits of the code’s performance, we work
around the I/O bottleneck from this point on. In the next experiment,
the input is assumed to already be loaded in memory, and the output
goes to another memory buffer (Figure 4). Without the SSD con-
tention, the only shared resource among the threads is RAM access,
so scaling is significantly better: at 8 threads, the speedup relative to
1 thread is a respectable 6.23×. Note that the maximum encoding
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Fig. 3. Median throughput with multithreading (100 runs; 3 GiB input; 128
KiB chunks; 95% CI)
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Fig. 4. Median throughput with multithreading and no I/O, just RAM input
and output (100 runs; 3 GiB input; 95% CI)

throughput—although much improved at 10,984 MBases/s—is again
limited by the storage medium’s performance, in this case the DDR4
3200 bandwidth of ≈ 12, 300 MiB/s, as measured by running the
mbw -t2 3000 benchmark. By 16 threads, relative speedup has
dropped to only 8.98×.

Again, we confirm this bottleneck by removing it, i.e., by encoding
smaller chunks that fit in the CPU cache. As Figure 5 shows, smaller
chunks indeed improve throughput but not dramatically, suggesting
there is still room for more performance.

D. Vector- and bit-level parallelism

We can further improve the code’s efficiency by exploiting the
fact that all the encoder needs from each input byte are two bits
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Fig. 6. Direct mapping from ASCII bases to two bits
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Fig. 7. Median encoder throughput using pext (100 runs; 95% CI; no I/O)

that are unique to that base. It just so happens that the ASCII
representation of the bases offers two such bits in the 2nd and
3rd least-significant positions (Figure 6). We take advantage of this
property by using bit manipulations to implement the same mapping
as in the Baseline algorithm for up to 8 input bases in parallel. Better
yet, the BMI2 instruction set in modern x86-64 CPUs contains the
vectorized Assembly instruction Parallel Bits Extract (PEXT), which
implements this parallel mapping in just a few cycles.

We replaced the four lines in the inner loop above with a paral-
lelized mapping from 8 bases to 16 bits. Because of Big-Endianess
and byte arrangement in memory, we actually need to flip the byte
order in each 64-bit input word, and then again flip the order of the
two encoded bytes, in order to preserve file-format compatibility with
all the previous encoders. This vectorization does indeed unlock an
order-of-magnitude improvement in maximum encoding throughput
(Figure 7). Moreover, even when chunk sizes are too large to fit
entirely in L3 cache (64 MiB), we can saturate the RAM bandwidth
at a much lower thread count, requiring fewer CPU resources.

The decoder works similarly with the reciprocal parallel-deposit
instruction (PDEP) and byte reordering, but requires an extra transla-
tion step, because the ‘10’ bit sequence actually maps back to ‘E’, not
to ‘T’. Although this translation is also implemented with bit-parallel
operations, it still slows down decoding compared to the baseline.

E. Instruction-level parallelism

The code using PEXT and PDEP is already fairly efficient: when
running it single-threaded from cache, Linux’s perf tool reports an
instruction-level parallelism of ≈ 4.4 instructions-per-cycle (IPC).
Both IPC and total instruction count can be improved further by
removing the code that reorders bytes during encoding and decoding
(Figure 8). Although the encoded file will no longer maintain the
same base order as the raw input, the decoded file will still be
identical to the raw input, using far fewer instructions. This small
change boosts IPC to ≈ 6.5 and median single-threaded encoding
throughput to 34,949 MBase/s (90.7% improvement over the ordered
version). We also unrolled the main loop twice to obtain an additional
4% improvement in maximum throughput.

Because of the cost of the ‘E’-to-‘T’ translation with PDEP, we
chose to reimplement the unordered decoder with a LUT, this time
mapping from 8 two-bit bases to 8 ASCII bases. This change yielded
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a significant performance boost in decoding, but at the cost of
incorporating a larger 512 KiB LUT in the code, increasing the binary
size from 34 KiB to 545 KiB.

III. DISCUSSION

Figure 9 summarizes the best-case performance (not median) for
all algorithms with three underlying storage media: SSD, RAM, and
L3 CPU cache. The best encoder throughput approaches the CPU’s
L3 memory-copy bandwidth of 532 GB/s, as measured by AIDA 64.
Moreover, the memory consumption of both the encoder and decoder
is dominated by the configurable buffer sizes. Since we use modestly-
sized buffers for improved performance (typically 128 KiB), even
with 16 threads the encoder and decoder require less than 5 MiB of
RAM. For comparison, even the SSD-based encoding is about 5 ×
faster than the fastest encoder recorded in the sequence compression
benchmark [9], lzturbo-20-4t, using ≈ 0.25% of its RAM.

These results demonstrate that direct encoding can be so efficient
that it is feasible to encode or encode data on the fly even with
modest resources, including on embedded devices like smartNICs and
FPGAs. Direct-encoding can also be incorporated as part of other
DNA storage or compression mechanisms such as reference-based
and de-novo compression [3] with little additional overhead.

There remain several interesting questions for future work: Why
does decoding throughput sometimes exceed encoding throughput
and sometimes not? How is IPC affected by the storage media and by
the number of threads? What is the effect of multithreading on per-
formance variability? And, can we successfully use these algorithms
in GPUs, with their high core count and memory bandwidth?

IV. CONCLUSION

With the exponential growth in genetic data, encoding and decod-
ing DNA quickly grows critical to computational biology. Direct-
coding offers the fastest alternative for DNA compression, yielding a
modest but predictably constant compression ratio of 4:1. For direct-
coding to take full advantage of the capabilities of ubiquitous modern
hardware, we need to exploit parallelism on all levels: processes,
threads, devices, vectors, bits, and instructions. This paper proposes
an efficient implementation to unleash the full parallelism of modern
CPUs, maximizing throughput to the underlying storage media’s
limits while minimizing computational resource use.
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