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Traditional HPC and modern AI computing are converging with workflows
as a common paradigm. We predict nine principles of heterogeneity and
serverless for this convergence, from high-level programming to low-level
hardware.
High Performance Computing (HPC) is increasingly converging with AI, and both are
increasingly expressed as workflows. Workflows enable a higher level of abstraction that is
easier to develop, (re)use, and operate. Both HPC and AI depend heavily on accelerators, and
they both adopt serverless computing. Similarly to workflows, serverless also raises the level of
abstraction and simplifies DevOps [1]. In addition, it matches the fine granularity of accelerators
in terms of time and size; they intuitively represent a good match in terms of performance and
utilization.

When analyzing this convergence, three perspectives with different requirements and benefits
exist:

1. End users care about latency or throughput of workflows at scale and ease/convenience
of use.

2. Developers care about ease of development, e.g., constructing workflows from existing
workloads and making QoS guarantees.

3. Providers (of services infrastructure) primarily care about meeting SLAs for user QoS
and maximizing infrastructure utilization.

These three roles intertwine, and individuals could easily play two or even all three roles. For
example, an end user of some services can be a provider to other users; a developer can
conduct operations.

The principles and approaches we describe strive towards enabling seamless scalability and
fluidity for end users; increased productivity of developers; and improved performance efficiency
of providers.



To navigate these principles, we organized them in Figure 1, listed in order of description. Each
principle enumerates possible benefits. The Figure should be read clockwise, starting with
principle 1.

Figure 1. Landscape of Principles

(1) Workflows will become native applications for HPC & AI
With no intention of exploring the history of HPC and while focusing on the software evolution
over hardware innovations, we would like to recall simpler times when calculations were
performed on isolated, domain-specific problems by homogeneous CPU-based hardware. As
the computational problems grew in complexity, they were typically broken into smaller tasks or
files. However, it was still feasible then for a single programmer or small team to completely
rewrite the code. Today’s variety of domain-specific workflows in HPC pushed application
scientists and engineers to propose various workflow-management systems with no clear
standards or implementation patterns beyond a few workflow specifications and programming
languages (Figure 2).

As individual applications become workflow-friendly by embedding CPU/GPU programming in
single executables, it’s becoming clearer that these partial solutions are unlikely to stay relevant,
partially because the end of the Dennard-scaling era is leading to accelerator diversification.
Creating truly native solutions for HPC will likely involve not only methodologies from multiple
domains of knowledge at once, but also: (1) distributing computing tasks efficiently between
emerging accelerators, (2) dynamically redeploying at scale, and (3) generating/testing
workflows interactively using low-code programming models and simulations. The need for
human experts to achieve next-level performance on these increasingly complex computational
workflows will be complemented by machine learning and AI. These techniques will not only be



used within the workflows themselves but also as part of the HPC infrastructure. Future HPC is
evolving towards harmoniously engineered workflows whose complexity can be abstracted
while still performing optimally under flexible conditions.

Figure 2. Evolution of Workflows

Optimally deploying these heterogeneous codes will require attention to how these codes are
represented, as discussed next.

(2) MLIR will Address Heterogeneity Complexity

As applications become more workflow-centric, it becomes increasingly challenging for
programming languages and compilers to ensure efficient task execution, unified representation,
interoperability, and good abstraction. Multi-Level Intermediate Representation (MLIR) [2] is an
open-source project initiated by LLVM to develop a new intermediate representation for
compilers. It addresses some of the limitations of compilers that use traditional IRs (like
LLVM-IR) by providing a more expressive, flexible, and efficient way to represent program
structures in the front end. It also enables efficient compilation, optimization, and interoperability
across diverse programming languages, domains, and hardware platforms, fostering innovation
and collaboration in compiler design, AI, HPC, and more.

MLIR offers several advantages to HPC, AI, and workflow optimization. Its robust optimization
capabilities, including high-level optimizations like data layout transformation, alongside
low-level optimizations such as loop unrolling and vectorization, allow performance tuning of
HPC applications. Its hardware-agnostic representation allows workflows to adapt effortlessly to
heterogeneous architectures, like CPUs, GPUs, FPGAs, or future Quantum Computing
accelerators, enabling customized optimization for various HPC configurations. It provides a



unified representation for complex workflows, including HPC and AI components, ensuring easy
integration and optimization across multiple computing workloads in a single format. Its
framework-specific dialects, which support TensorFlow, PyTorch, etc., ensure seamless model
translation and integration across various components of AI processes, providing compatibility
and ease of implementation.

Moreover, the flexibility and dynamic compilation capabilities of MLIR aid in sustainable
workflow scheduling (discussed next) and enable dynamic deployment of HPC/AI workflows
(principles #3 and #4), enabling real-time optimizations and efficient scaling of individual
workloads.

(3) Serverless global processing near clean energy
In the drive toward a more sustainable digital realm, the potential of workflow scheduling
emerges as a transformative force. Through the decomposition of workflows into smaller,
manageable functions, an opportunity arises to strategically deploy these functions based on
geographical and environmental considerations. Geo-distributed computational resources differ
in their energy sourcing. Some benefit from renewable energy, while others draw power from
carbon-intensive fossil fuels; some have faster computing capabilities, and vice versa. By
leveraging workflow scheduling, functions can be located based on utilization, operating cost,
and critically, environmental sustainability [3, 4]. This inherent flexibility allows functions within
workflows to run in varied geographical regions, aiming to either minimize carbon emissions or
optimize the total runtime of a workflow.

Figure 3: Carbon-aware scheduling of functions within a workflow

To validate this idea, we proposed a framework (shown in Figure 3) and conducted a series of
experiments. We used Globus Compute [5] as the backbone of our framework to distribute
functions across various geo-distributed compute resources. Our experimental setup
encompassed a variety of computational resources: a Kubernetes cluster at HPE in Milpitas,
CA, and two Google Cloud Platform servers, one in Los Angeles, CA, and another in Council
Bluffs, IA. Each location had its distinct energy profile, influencing the function deployment



strategies. The functions originated in HPE's office in Fort Collins, CO. The global workflow
scheduler was interfaced with Performance Co-Pilot (PCP) to monitor crucial metrics such as
power consumption. Our experimental focus was the implementation of a carbon-aware
scheduling policy aimed at minimizing carbon emissions in function deployment. Utilizing the
proposed policy, the system was able to execute more functions (utilize more hardware) with
lower carbon emissions.

Building upon the operational advantages of geo-distributed scheduling, we next explore
dynamic redeployment, harnessing heterogeneous hardware to further optimize our global
workflow framework.

(4) Parts of workflows will be dynamically deployed
With the increase in HPC and AI in computational research, the need to alleviate the bottleneck
of statically deployed workflows grows urgent. Traditionally, workflows have been hosted on a
fixed number of machines, resulting in resource underutilization. The growth of cloud-based
virtual machines and bare-metal nodes enabled a game-changing solution: dynamic
(re-)deployment of workflow components. This strategy ensures that specified components of a
workflow operate on specialized hardware, maximizing utilization and decreasing workflow
execution runtime [6]. These components can be dynamically re-deployed on specific hardware
accelerators when they are available.

To validate this dynamic redeployment model, we used the GROMACS Lysozyme workflow [7].
We tried three different execution methods:

1. Serial Monolithic Execution (monolith): The traditional approach, executing the workflow
as serial, monolithic tasks.

2. Decomposed but Heterogeneity-Oblivious Execution (decomposed_NHHA): The
workflow was decomposed into its constituent functions and executed on a serverless
platform without specific hardware considerations.

3. Decomposed and Heterogeneous-Hardware-Aware Execution (decomposed_HHA):
Enhancing the second method, this technique dynamically redeployed the decomposed
functions, assigning intensive tasks to specialized nodes with GPUs (when available).

Figure 4 details these execution techniques. Monolith and decomposed_NHHA are inefficient
since they don’t utilize the specialized hardware, thus taking longer to run. While
decomposed_NHHA has extended execution times due to container cold starts, the
decomposed_HHA method significantly reduces runtime.



Figure 4: Three distinct execution techniques for GROMACS Lysozyme workflow

Dynamically redeploying workflow components optimizes task execution on suitable hardware,
ensuring enhanced cluster utilization and minimized runtime. This shift towards dynamic
deployment signifies a future of optimized resource allocation in computational research.

There is a huge demand for GPUs nowadays, shifting importance from user workload execution
to maximizing GPU utilization, which leads us to the next principle.

(5) GPUs will be fully utilized through bin-packing
A workflow task might not saturate the entire GPU, so exploiting accelerator granularity could be
increasingly important for HPC [8, 9]. To motivate finer accelerator granularity, we present an
experiment where we ran the same nano-LAMMPS workflow with different GPU partition sizes.
We picked a kernel that ran over 6000 times during the workflow execution and plotted its
runtime with varying amounts of GPU compute (GPU%) in Figure 5(a). We can see the runtime
of some runs (0-1000) improve when the GPU% gets higher, although not as much between
kernels running at 50% GPU and 100% GPU. However, the runtime of almost all kernels hovers
around 5 microseconds and does not change regardless of the GPU %. These measurements
show that the kernels in these workflows do not require 100% GPU, and often 20% GPU
suffices. Packing the GPU with multiple workflows, each getting a certain GPU% could increase
the GPU throughput.



Figure 5 (a) Kernel runtime of workflow across different GPU% (b) Completion time of 5
workflows running concurrently

In another experiment, we look at the throughput of bin-packed GPU compared to where GPU is
not multiplexed. In Figure 5(b), we present the time to run 5 LAMMPS workflows. Giving each
workflow its own “bin” with 20% GPU completes running all workflows 60% faster than running
each workflow individually with 100% GPU. This reduction in makespan stems from the
increased throughput due to partitioning the GPU and running workflows concurrently.

Data transfer across computing elements (CPUs, GPUs, FPGAs, SmartNICs, etc.) is the
slowest part of such workflows. Therefore, optimizing this communication is imperative. The
next principle discusses optimizing performance with peer-to-peer (p2p) communications.

(6) Accelerators will communicate p2p

Figure 6. (a) Unidirectional inter-node GPU to GPU BW (b) Unidirectional inter-node GPU to
GPU Latency



When accelerators consume the majority of the application’s computation it is necessary to
enable faster data movement to them, which currently uses the PCIe interface. However, the
number of PCIe lanes at the CPU socket level limits the number of accelerators at a node level.
Although a dual-socket-based server allows more accelerators per server, the NUMA-node
connectivity interface for communication between accelerators across sockets can become a
bottleneck. This is where p2p access to accelerators can help.

To illustrate this technique, we measured transfers from Mellanox InfiniBand (IB) 200Gbps NIC
to Nvidia A100 GPU using GPUDirect [10], which uses PCIe p2p transfers. We compared it to a
host bounce-back (host buffer as an intermediate data copy). We used OpenMPI 4.1.1 which
supports GPUDirect transfer and point-to-point OSU latency and bandwidth benchmarks for the
analysis [11].

Figure 6(a) shows that GPU-to-GPU device communication across nodes through IB NIC using
GPUDirect/p2p exhibits 1.2x--3x higher bandwidth than host bounce-bank. Also, GPUDirect/p2p
GPU device buffer transfer could saturate the PCIe interface to the practical bandwidth limit of
24GB/sec (75% of the theoretical PCIe Gen4 x16 bandwidth of 32GB/sec). In addition,
GPUDirect/p2p (Figure 6(b)) also exhibits 1.2x--5x lower latency for message sizes below 8MB,
but for message sizes larger than 16MB the latency of GPUDirect/p2p transfers converges to
host bounce-back transfer latency.

With machine-learning training workloads that rely on GPU-to-GPU communication, higher p2p
transfer bandwidth allows faster training speeds. For HPC workloads, most of the GPU-to-GPU
communication would use small message sizes, so lower latency using p2p transfer will reduce
overall application execution time.

In addition to GPU partitioning and p2p optimizations, the next principle introduces operator
offloading as another important performance optimization.

(7) Operator offloading will enable performance at an extreme scale
In addition to hardware accelerators, distributed HPC and AI workflows rely on
industry-standard libraries such as the Message Passing Interface (MPI) to effectively distribute,
perform, and synchronize computation across interconnected machines. Common distributed
operations, such as synchronizing data buffers in multiple machines via an aggregation
operation, are encapsulated in MPI collective communication routines, or collectives. The
operation AllReduce collective in MPI parlance is a fundamental operation of AI training
workloads and also appears in many HPC workloads [12]. Driving these critical communication
operations using the CPU or an accelerator such as the GPU consumes valuable computation
and memory bandwidth, slowing down application performance [13]. Other than MPI collectives,
operators such as data sorting, filtering, and encrypting/decrypting [14] are also ubiquitous in
HPC and AI workflows. Since all of these critical and high-frequency operators depend on
network communication, freeing CPU and GPU bandwidth by offloading operators to network



hardware such as Network Interface Controllers (NICs) and switches presents a great
opportunity to improve the performance of HPC and AI workflows [15].

When pushing AI and HPC workflows toward extreme scales, for example, systems with tens or
hundreds of thousands of GPUs, it becomes extremely hard to hide communication operations
behind computation operations. Figure 7 presents the results of analytical simulations and
modeling of distributed training of Convolutional Neural Networks (CNNs) and Large Language
Models (LLMs) in extreme-scale systems. The figure highlights the large impact that driving
communication has on GPU bandwidth, especially when increasing the message size of MPI
collectives. We modeled analytically and simulated the use of AllReduce operations in AI
workflows without NIC offloading (shown in green lines), with NIC offloading (shown in blue
lines), and with NIC offloading plus full gradient caching (red lines). This last scenario is
impractical in real hardware since the necessary cache size would be too expensive, but it can
serve as a basis for comparison for increasing NIC cache sizes from the feasible scenario
shown on the blue lines. We simulated real AI training workloads, from ResNet200 to GPT-4,
highlighting the total AllReduce size involved in training each neural network. These simulations
and models demonstrate that, after saturation, driving communication during training would
leave only around 30% of GPU memory bandwidth free for computation, while offloading the
AllReduce to a capable NIC would leave up to 87% GPU memory bandwidth free, which
represents an expressive amount of computing power at extreme scales.

Figure 7: Analytical simulations and modeling of distributed training of CNNs and LLMs in
extreme scale systems, highlighting the large impact that driving communication has on GPU
bandwidth.

The seven optimization mechanisms and operation principles described so far emphasize
heterogeneity in hardware in software, which complicates performance evaluation, as discussed
next.



(8) Account for the non-deterministic performance of large-scale HPC and
AI workloads
The combination of large-scale and heterogeneous software, middleware, and hardware means
that every time we measure system performance we could be getting a different result (as
shown for illustration in Figure 8). Some variability could be reduced or controlled, but likely not
all of it. If the observed performance differences are relatively large and unpredictable, this
non-deterministic behavior obfuscates the actual performance of the underlying system. It
therefore becomes increasingly harder to answer critical business questions such as: does
system A perform better than system B? What is the cost/performance of a system? Did its
performance regress or improve?

The key to answering such questions is to handle performance like every other
non-deterministic factor using statistical tools for distributions, similar to the research tools used
in social and medical sciences. These tools can range from simple hypothesis testing and
quantification of uncertainty to more advanced topics such as divergence metrics and causality
analysis. Although these tools carry an implicit penalty, both in additional work and additional
expertise, they also carry the promise of better performance reproducibility, correct
interpretations, and actionable insights.

Figure 8: Performance histograms for four example applications from the Rodinia HPC
benchmark suite, run 1,000 times each on a single machine with no interference. These
applications represent, in clockwise order, distributions that are approximately near-constant,
right-tailed, symmetric, and left-tailed.

(9) Predicting app/service performance on any configuration will be critical



The nondeterministic behavior of complex system performance brings to light the need for
accurate estimates of performance and its distribution. For example, performance models of key
applications have always been critical in the design and procurement of future computer
systems [16], but these models often assume a homogeneous workload and architecture.
As another example, when making scheduling decisions on a shared cluster, understanding the
expected tail and outliers of the performance distribution of an application can impact the timing
of its scheduling, to maintain service-level agreements for other jobs.

Together with collaborator Izzat el Hajj at the American University of Beirut, we have been
developing performance prediction mechanisms based on a machine-learning model trained on
low-level performance metrics. This model has been successfully demonstrated in tasks such as
predicting the performance of known applications on new hardware configurations [17], which
can be applied to the problem of selecting new hardware without benchmarking on all available
choices. These techniques were also successful in predicting when applications are near the
end of their execution, as a very useful prediction for supercomputer and mission-critical
schedulers.

Summary

We presented nine principles of convergence of HPC, AI, and workflows. These end-to-end
principles cover workflows, through middleware, to hardware. Nevertheless, there are many
other missing aspects where this convergence can apply [18, 19, 20]. We did not even touch on
nonfunctional aspects, such as security, reliability, scale, availability, etc. Each of these
represents a considerable challenge but also an opportunity for improved usability,
development, and delivery of converged HPC, AI, and workflows.
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